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The many faces of the string tachyon

Conformal field theory [Sen 2002].
Dirac–Born–Infeld (DBI) effective action [Garousi 2000;

Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001].
Boundary string field theory (BSFT) [Witten 1992,1993;

Shatashvili 1993a,b].
Cubic string field theory (CSFT) [Witten 1986a,b; Preitschopf et al.

1990; Aref’eva et al. 2002; Aref’eva et al. 1990a,b; Berkovits 1996,1999].

For reviews see Sen (hep-th/0410103) and Ohmori
(hep-th/0102085).
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Two actions for one tachyon (in Minkowski)

DBI tachyon (negligible higher-than-first-order derivatives):

S̄T = −
∫

dDxV(T)
√

1 + ∂µT∂µT

Cubic string field theory:

S = − 1
g2

o

∫ (
1

2α′
Φ ∗ QBΦ +

1
3
Φ ∗ Φ ∗ Φ

)
At level (0, 0): Φ ∼= |Φ〉 = φ(x)|↓〉 and (metric −+ + + . . . )

S̄φ =
1
g2

o

∫
dDx

[
1

2α′
φ(α′∂µ∂

µ + 1)φ− λ

3

(
λα′∂µ∂µ/3φ

)3
− Λ

]
where λ = 39/2/26 ≈ 2.19. Theories with an ∞ number of

derivatives are called nonlocal.
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1: How to deal with nonlocal theories?

Non-standard Cauchy problem: infinite initial conditions, to
know them means to find the solution if analytic in its
domain [Moeller and Zwiebach 2002].
Quantization unclear. Addressed by the 1 + 1 Hamiltonian
formalism [Llosa and Vives 1994; Gomis et al. 2001,2004].
Difficult systematic construction of solutions. Only
perturbative methods available [Eliezer and Woodard 1989; Cheng

et al. 2002].
Nonlocal theories at odds with the inflationary paradigm:
while the latter tends to erase any memory of the initial
conditions, the formers do preserve this memory. SR
approximation unclear: The cosmological eom’s are
nonlinear and involve the whole infinite SR tower.
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2: What are the nonperturbative solutions of CSFT?

Coefficients of the series oscillatory solution difficult to
compute [Kiermaier et al. 2007].
Undetermined convergence properties of perturbative
solutions [Coletti et al. 2005; Forini et al. 2006].
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3: What are the cosmological predictions of CSFT
tachyon?

SFT tachyon: finite-order/perturbative solutions [Aref’eva et al.

2007].
DBI tachyon (local): extensively studied both as inflaton
and dark energy field but problematic or ineffective in both
cases.
The equation of state of CSFT tachyon is less rigid than
the DBI one. A comparison would open up interesting
possibilities. Skip details
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DBI tachyon inflation

No reheating with runaway string effective potentials.
Large density perturbations with such potentials.
Reheating can be achieved with a negative KKLT-like Λ.
Anisotropies adjusted with small warp factor [Garousi et al.

2004].
With phenomenological potentials, good inflation and
non-Gaussianity but non-characteristic predictions.
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DBI tachyon as dark energy
with Andrew R. Liddle – PRD 74, 043528 (2006), astro-ph/0606003

Only phenomenological (string decay scale).
Different predictions between the DBI tachyon and
canonical quintessence?
For a wide choice of potentials (ad-hoc or motivated), fine
tuning on either the i.c. or the parameters of the potential.
High-precision observational cosmology allows to
constrain the theory in a remarkable way.
The tachyon cannot decay faster than dust matter,
ρT ∼ a−3(1+wT) > ρm ∼ a−3 ⇒ cannot be used as
quintessential inflaton.
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An analytic recipe

We propose a systematic method which allows:

1:
To construct nonperturbative solutions (at least approximate,
hopefully exact) of general nonlocal systems on Minkowski and
curved background. Perturbative solutions are automatically
recovered.

2:
To address all issues of nonlocality, including initial conditions
problem and consistent quantization.

See Joukovskaya 2007 for a recent numerical method.
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[
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2
φ(�− m2)φ− U(φ̃)− Λ

]
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lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Cubic SFT action

S = Sg + Sφ, Sg =
1

2κ2
D

∫
dDx

√
−g R

Sφ =
∫

dDx
√
−g

[
1
2
φ(�− m2)φ− U(φ̃)− Λ

]
� ≡ 1√

−g
∂µ(

√
−g ∂µ)

φ̃ ≡ λ�/3φ ≡ er∗�φ , r∗ ≡
lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Cubic SFT action

S = Sg + Sφ, Sg =
1

2κ2
D

∫
dDx

√
−g R

Sφ =
∫

dDx
√
−g

[
1
2
φ(�− m2)φ− U(φ̃)− Λ

]

� ≡ 1√
−g

∂µ(
√
−g ∂µ)

φ̃ ≡ λ�/3φ ≡ er∗�φ , r∗ ≡
lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Cubic SFT action

S = Sg + Sφ, Sg =
1

2κ2
D

∫
dDx

√
−g R

Sφ =
∫

dDx
√
−g

[
1
2
φ(�− m2)φ− U(φ̃)− Λ

]
� ≡ 1√

−g
∂µ(

√
−g ∂µ)

φ̃ ≡ λ�/3φ ≡ er∗�φ , r∗ ≡
lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Cubic SFT action

S = Sg + Sφ, Sg =
1

2κ2
D

∫
dDx

√
−g R

Sφ =
∫

dDx
√
−g

[
1
2
φ(�− m2)φ− U(φ̃)− Λ

]
� ≡ 1√

−g
∂µ(

√
−g ∂µ)

φ̃ ≡ λ�/3φ ≡ er∗�φ ,

r∗ ≡
lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Cubic SFT action

S = Sg + Sφ, Sg =
1

2κ2
D

∫
dDx

√
−g R

Sφ =
∫

dDx
√
−g

[
1
2
φ(�− m2)φ− U(φ̃)− Λ

]
� ≡ 1√

−g
∂µ(

√
−g ∂µ)

φ̃ ≡ λ�/3φ ≡ er∗�φ , r∗ ≡
lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Cubic SFT action

S = Sg + Sφ, Sg =
1

2κ2
D

∫
dDx

√
−g R

Sφ =
∫

dDx
√
−g

[
1
2
φ(�− m2)φ− U(φ̃)− Λ

]
� ≡ 1√

−g
∂µ(

√
−g ∂µ)

φ̃ ≡ λ�/3φ ≡ er∗�φ , r∗ ≡
lnλ

3
≈ 0.2616

er∗� =
+∞∑
`=0

r`
∗
`!

�` ≡
+∞∑
`=0

c`�
`



Motivations Diffusion equation method Summary

Equations of motion: scalar field

−(�− m2)φ+ er∗�Ũ′ = 0

where Ũ′ ≡ ∂U
∂φ̃

.

In terms of φ̃:
−(�− m2)e−2r∗�φ̃+ Ũ′ = 0

Skip energy-momentum tensor
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Friedmann–Robertson–Walker background

Flat FRW metric:

ds2 = −dt2 + a2(t) dxidxi.

The Hubble parameter is defined as H ≡ ȧ/a = dta/a.
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ρ = −T0
0 =

φ̇2

2
(1−O2) + Ṽ −O1

p = Ti
i =

φ̇2

2
(1−O2)− Ṽ +O1

O1 =
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0
ds (es�Ũ′)(�e−s�φ̃),

O2 =
2
φ̇2

∫ r∗

0
ds (es�Ũ′).(e−s�φ̃)..
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Unviable cosmologies?

Important class of dynamics:

φ = tp, H = H0tq

Constant SR parameters when q = −1.

�`φ = (−1)`tp−2`
`−1∏
n=0

(p− 2n)(p− 2n− 1 + 3H0).

If p ∈ R \ N+, φ̃ is ill-defined:

lim
`→∞

∣∣∣∣c`+1�`+1φ

c`�`φ

∣∣∣∣ = lim
`→∞

|c1(p−2`)(p−2`−1+3H0)|
t−2

`+ 1
= +∞ .

Finite series if p is a positive even number (then φ̃ ∼ tp) or
p− 1 + 3H0 = 2n.
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Can we conclude that power-law cosmology cannot be used as
a base for nonlocal solutions?

NO!
What is not defined is the nonlocal solution expressed as an
infinite series of powers of the d’Alembertian.
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Localization
G.C., M. Montobbio, G. Nardelli, 0705.3043 [hep-th]

Interpret r∗ as a fixed value of an auxiliary evolution
variable r. The scalar field φ(r, t) is thought to live in 1 + 1
dimensions.
The solution φloc(t) = φ(0, t) of the local system (r∗ = 0) is
the “initial condition”.
Define

φ(r, t) ≡ er(β+�/α)φloc(t)
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Properties

1 It satisfies the diffusion equation:

α∂rφ(r, t) = αβ φ(r, t) + �φ(r, t)

2 eq� is simply a shift of the auxiliary variable r.

eq�φ(r, t) = eαq ∂rφ(r, t) = φ(r + αq, t)

3 The system becomes local in t!

(�− m2)φ(r, t) = Ũ′[φ((1 + 2α)r, t)]

Valid for general nonlocal operators and ‘diffusion equations’.
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Steps towards localized solutions

1 Find the eigenstates of the d’Alembertian operator:

�G(µ, t) = −G̈(µ, t)− 3HĠ(µ, t) = µ2G(µ, t) .

2 Write the local solution as an expansion in the basis of
eigenstates of the � (integral transform):

φ(0, t) =
∫

dµG(µ, t) f (µ) .

3 Write the nonlocal function (Gabor transform):

φ(r, t) =
∫

dµ er(β+µ2/α)G(µ, t) f (µ) .

It satisfies the heat equation by definition!
4 Check that φ(r, t) is a solution of the nonlocal e.o.m.s for

some α, β.
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2 Write the local solution as an expansion in the basis of
eigenstates of the � (integral transform):

φ(0, t) =
∫

dµG(µ, t) f (µ) .

3 Write the nonlocal function (Gabor transform):

φ(r, t) =
∫

dµ er(β+µ2/α)G(µ, t) f (µ) .

It satisfies the heat equation by definition!
4 Check that φ(r, t) is a solution of the nonlocal e.o.m.s for

some α, β.



Motivations Diffusion equation method Summary

Steps towards localized solutions

1 Find the eigenstates of the d’Alembertian operator:

�G(µ, t) = −G̈(µ, t)− 3HĠ(µ, t) = µ2G(µ, t) .
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Exact susy potential U ∝ (er∗�φ̃2)2, Minkowski background
(R = 0).

ψ(r, t) = −
∫ +∞

−∞
dσ ∂σK(σ, r) ln(cosh t + sinσ)

where K(σ, r) ∝ e−
σ2
4r .

A series representation is also available.
Global solution valid at all times.
Almost exact: for the eom LHS = RHS,∫ +∞

−∞ dt(LHS− RHS)2∫ +∞
−∞ dt(LHS + RHS)2

∼ 10−13 .

The same result can also be found via a new powerful
technique (valid only on Minkowski) based on harmonic
functions.
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Spike and oscillatory solutions

Figure: Solid: global solution. Dashed: asymptotic solution.

The analytic properties of these solutions are all under control.
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a = tH0, H = H0t−1, φloc = tp

φ(r, t) ∝ Ψ
(
−p

2
; 1− ν;

αt2

4r

)

ν = (1− 3H0)/2

Ψ(α; β; z) =
π

sinπβ

[
Φ(α; β; z)

Γ(1 + α− β)Γ(β)

−z1−β Φ(1 + α− β; 2− β; z)
Γ(α)Γ(2− β)

]
,

Φ(α; β; z) =
Γ(β)
Γ(α)

+∞∑
k=0

Γ(α+ k)
Γ(β + k)

zk
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a = tH0, H = H0t−1, φloc = tp

Figure: p = 1/2, ν = −3/2, r = −1
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a = tH0, H = H0t−1, φloc = tp

Figure: p = 1/2, ν = −3/2, r = 1
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Is ψ(r, t) a solution?

It is not a global solution but it is a local one (i.e., at late
times) for braneworld models.

The situation in 4D is similar.
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Achieved results

Developed a systematic method by which to find
nonperturbative solutions of nonlocal systems.

Bosonic and susy CSFT global solutions found in
Minkowski.
Asymptotic solutions found in cosmological toy models.
Nonlocality generates new dynamics (at classical and
quantum level). Interpretation issues are all addressed.

Open issues
Search for ‘string’ cosmological solutions in progress.
Theoretical foundations of the formalism are not
completely assessed (to appear).
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