Lisa Hall

University of Sheffield, UK

work in progress with Carsten van de Bruck and Ki-Young Choi

Lisa Hall University of Sheffield, UK

• Uplifting of AdS vacua

Lisa Hall University of Sheffield, UK

- Uplifting of AdS vacua
 - Kacrhu, Kallosh, Linde, Trivedi (2003):

$$\delta V = \frac{k}{\operatorname{Re}(T)^2}$$

Lisa Hall University of Sheffield, UK

- Uplifting of AdS vacua
 - Kacrhu, Kallosh, Linde, Trivedi (2003):

$$\delta V = \frac{k}{\operatorname{Re}(T)^2}$$

• D-term

Lisa Hall University of Sheffield, UK

- Uplifting of AdS vacua
 - Kacrhu, Kallosh, Linde, Trivedi (2003):
- D-term
 - Burgess, Kallosh, Quevedo (2003)
 - Achúcarro, de Carlos, Casas, Doplicher (2006)

 $\delta V = \frac{1}{2a^2}D^2$

Lisa Hall University of Sheffield, UK

- Uplifting of AdS vacua
 - Kacrhu, Kallosh, Linde, Trivedi (2003):
- D-term
 - Burgess, Kallosh, Quevedo (2003)
 - Achúcarro, de Carlos, Casas, Doplicher (2006)
- Matter Superpotentials: (F-term uplifting)
 - Lebedev, Nilles, Ratz (2006)

$$\delta V = \frac{1}{2g^2} D^2$$

Lisa Hall University of Sheffield, UK

- Uplifting of AdS vacua
 - Kacrhu, Kallosh, Linde, Trivedi (2003):
- D-term
 - Burgess, Kallosh, Quevedo (2003)
 - Achúcarro, de Carlos, Casas, Doplicher (2006)
- Matter Superpotentials: (F-term uplifting)
 - Lebedev, Nilles, Ratz (2006)
- Stabilisation from additional matter field
 - (with background fluid)

$$\delta V = \frac{1}{2g^2} D^2$$

KKLT (Kachru, Kalosh, Linde, Trivedi) Model

<u>KKLT and the Polonyi Model</u>

 $K = -3\ln(T + \bar{T}) + |C|^2$

 $c \sim \mu^2 \left(2 - \sqrt{3} - \frac{\sqrt{3}}{6} \epsilon \right)$ $V_0 \sim \epsilon \mu^4$ $C \sim \sqrt{3} - 1 - \frac{\sqrt{3} - 3}{6}\epsilon$

Lebedev, Nilles, Ratz (2006) Lebedev, Löwen, Mambrini, Nilles, Ratz (2006)

 $\mathcal{W}(C) = c + \mu^2 C$ $\mathcal{W}(T) = W_0 + A e^{-\alpha T}$

 $\mu^2 \sim W_0$ modulus heavy compared to Polonyi field

<u>KKLT and the Polonyi Model</u>

$$K = -3\ln\left(T + \bar{T}\right) + |C|^2$$

$$V_0 \sim \epsilon \mu^4 \qquad c \sim \mu^2 \left(2 - \sqrt{3} - \frac{\sqrt{3}}{6}\epsilon\right)$$

$$C \sim \sqrt{3} - 1 - \frac{\sqrt{3} - 3}{6}\epsilon$$

Lebedev, Nilles, Ratz (2006) Lebedev, Löwen, Mambrini, Nilles, Ratz (2006)

 $\mathcal{W}(C) = c + \mu^2 C$ $\mathcal{W}(T) = W_0 + Ae^{-\alpha T}$

 $\mu^2 \sim W_0$

modulus heavy compared to Polonyi field

$$\phi = \sqrt{\frac{3}{2} \ln T_r}$$

$$C = C_r + iC_i \qquad \qquad T = T_r + iT_i$$

KKLT and the Polonyi Model

 $K = -3\ln(T + \bar{T}) + |C|^2$

 $C = C_r + iC_i$

 $V_0 \sim \epsilon \mu^4 \qquad c \sim \mu^2 \left(2 - \sqrt{3} - \frac{\sqrt{3}}{6}\epsilon\right)$

$$C \sim \sqrt{3} - 1 - \frac{\sqrt{3} - 3}{6}\epsilon$$

Lebedev, Nilles, Ratz (2006) Lebedev, Löwen, Mambrini, Nilles, Ratz (2006)

 $\mathcal{W}(C) = c + \mu^2 C$ $\mathcal{W}(T) = W_0 + A e^{-\alpha T}$

 $\mu^2 \sim W_0 \qquad \begin{array}{c} \text{modulus heavy} \\ \text{compared to} \\ \text{Polonyi field} \end{array}$

 $T = T_r + iT_i$

ICSKaloper,Olive (1993)Barreiro, de Carlos, Nunes (1998)Barreiro, de Carlos, Copeland, Nunes (2005)

 $\overline{C_i = T_i} = 0$

 $C_r(N=0) = 0$

ICSKaloper,Olive (1993)Barreiro, de Carlos, Nunes (1998)Barreiro, de Carlos, Copeland, Nunes (2005)

 $C_i = T_i = 0$

 $C_r(N=0) = 0$

 $\phi(N=0) = -15$

ICSKaloper,Olive (1993)Barreiro, de Carlos, Nunes (1998)Barreiro, de Carlos, Copeland, Nunes (2005)

- $C_i = T_i = 0$
- $C_r(N=0) = 0$
- $\phi(N=0) = -15$
- $\Omega_b(N=0) = 0.93$

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

 $C_i = T_i = 0$ $C_r(N = 0) = 0$

 $\phi(N=0) = -15$

 $\Omega_b(N=0) = 0.93$

Kaloper, Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

(4)

35

-20

-15

Ó

-10

0 C,

-0.5

-5 -1

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

$$C_i = T_i = 0$$
$$C_r(N = 0) = 0$$
$$\phi(N = 0) = -15$$

 $\Omega_b(N=0) = 0.93$

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

 $C_i = T_i = 0$

 $\Omega_b(N=0) = 0.93$

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

 $C_i = T_i = 0$ $C_r(N = 0) = 0$ $\phi(N = 0) = -15$ $\Omega_b(N = 0) = 0.93$

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

 $C_r(N=0) = 0$ $\phi(N=0) = -15$

 $C_i = T_i = 0$

 $\Omega_b(N=0) = 0.93$

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

 $1 \ \partial V$

 $\overline{V} \ \partial \phi$

 $\lambda \equiv$

 $\phi(N=0)=-15$ $\Omega_b(N=0)=0.93$ matter background field

 $C_i = T_i = 0$

 $\overline{C_r(N=0)} = 0$

Kaloper,Olive (1993) Barreiro, de Carlos, Nunes (1998) Barreiro, de Carlos, Copeland, Nunes (2005)

 f_{p} 100 g_{p} 50 g_{p} 100 g_{p} 50 0 c_{r} 1.5 1.61.7

 $C_i = T_i = 0$

 $C_r(N=0) = 0$

 $\phi(N=0) = -15$

 $\Omega_b(N=0) = 0.93$

matter

background field

stabilisation depends on freeze point

 $-\frac{1}{V}\frac{\partial V}{\partial \phi}$

 $\lambda \equiv$

Two REAL Fields

$\Omega_{\mathrm{b}}=0.9$

Two REAL Fields

$\Omega_{\mathrm{b}}=0.9$

Two REAL Fields

- I. Potential dom.
- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Two REAL Fields

- I. Potential dom.
- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Two REAL Fields

- I. Potential dom.
- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

<u>Two REAL Fields</u>

- I. Potential dom.
- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Two REAL Fields

- I. Potential dom.
- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Two REAL Fields

- I. Potential dom.
- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Two REAL Fields

$\Omega_{ m b}=0.01$

At end of scaling (oscillation):

 $\Omega_{
m b}pprox 0.93$

I. Potential dom.

- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Two REAL Fields

$\Omega_{ m b}=0.01$

At end of scaling (oscillation):

 $\Omega_{
m b}pprox 0.93$

I. Potential dom.

- 2. Kination
- 3. Freeze out
- 4. Scaling
- 5. Oscillation

Summary

KKLT + Polonyi Model: $K = -3\ln(T + \overline{T}) + |C|^{2}$ $\mathcal{W}(C) = c + \mu^{2}C$ $\mathcal{W}(T) = W_{0} + Ae^{-\alpha T}$

...with background fluid

Summary

KKLT + Polonyi Model: $K = -3 \ln (T + \overline{T}) + |C|^2$ $\mathcal{W}(C) = c + \mu^2 C$ $\mathcal{W}(T) = W_0 + Ae^{-\alpha T}$

...with background fluid

2 <u>Real</u> Fields - new scaling mechanism

<u>Summary</u>

KKLT + Polonyi Model: $K = -3 \ln (T + \overline{T}) + |C|^2$ $\mathcal{W}(C) = c + \mu^2 C$ $\mathcal{W}(T) = W_0 + Ae^{-\alpha T}$

...with background fluid

2 <u>Real</u> Fields - new scaling mechanism - aids stabilisation

Summary

KKLT + Polonyi Model: $K = -3 \ln (T + \overline{T}) + |C|^{2}$ $\mathcal{W}(C) = c + \mu^{2}C$with background fluid $\mathcal{W}(T) = W_{0} + Ae^{-\alpha T}$

2 <u>Real</u> Fields - new scaling mechanism $3\gamma < \lambda^2 + \delta^2/2$ - aids stabilisation

<u>Summary</u>

KKLT + Polonyi Model: $K = -3 \ln (T + \overline{T}) + |C|^{2}$ $\mathcal{W}(C) = c + \mu^{2}C$with background fluid $\mathcal{W}(T) = W_{0} + Ae^{-\alpha T}$

2 <u>Real</u> Fields - new scaling mechanism $3\gamma < \lambda^2 + \delta^2/2$ - aids stabilisation

2 <u>Complex</u> Fields - aids stabilisation further

Summary

KKLT + Polonyi Model: $K = -3 \ln (T + \overline{T}) + |C|^{2}$ $\mathcal{W}(C) = c + \mu^{2}C$with background fluid $\mathcal{W}(T) = W_{0} + Ae^{-\alpha T}$

- 2 <u>Real</u> Fields new scaling mechanism $3\gamma < \lambda^2 + \delta^2/2$ - aids stabilisation
- 2 <u>Complex</u> Fields aids stabilisation further

Background: Matter/Radiation ($\gamma = 1, 4/3$)

Summary

KKLT + Polonyi Model: $K = -3 \ln (T + \overline{T}) + |C|^{2}$ $\mathcal{W}(C) = c + \mu^{2}C$with background fluid $\mathcal{W}(T) = W_{0} + Ae^{-\alpha T}$

- 2 <u>Real</u> Fields new scaling mechanism $3\gamma < \lambda^2 + \delta^2/2$ - aids stabilisation
- 2 <u>Complex</u> Fields aids stabilisation further

Background: Matter/Radiation ($\gamma = 1, 4/3$)

Carsten van de Bruck, Ki-Young Choi, Lisa Hall