Observational Bounds on the Cosmic Radiation Density

Jan Hamann

Based on arXiv:0705:0440, (to appear in JCAP) in collaboration with S. Hannestad, G. Raffelt and Y.Y.Y. Wong

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

< 🗗 >

What is the Universe made of?

Standard Model

- Photons (CMB)
- Baryonic matter
- Neutrinos (CvB)

Beyond Standard Model

- Cold Dark Matter
- Dark Energy
- other stuff?

Weakly interacting light particles \rightarrow radiation

- axion
- sterile neutrino
- light gravitino

What is the Universe made of?

Standard Model

- Photons (CMB)
- Baryonic matter
- Neutrinos (CvB)

Beyond Standard Model

- Cold Dark Matter
- Dark Energy
- other stuff?

Weakly interacting light particles \rightarrow radiation

axion

...

- sterile neutrino
- light gravitino

< A >

Cosmic Radiation Density

$$ho_{
m r} = rac{1}{15} \, \pi^2 \; T_{\gamma}^4 \left[1 + rac{7}{8} \, N_{
m eff} \, (\, T_{
u} / \, T_{\gamma})^4
ight]$$

- N_{eff}: Effective number of relativistic ("neutrino") dof
- Instant decoupling: $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- Exact SM expectation: $N_{\rm eff} \simeq 3.04$

[Mangano et al.: 2001]

Probing *N*_{eff} at different epochs

BBN [O(100 keV)] Helium fraction $2.10 \le N_{\text{eff}}^{\text{BBN}} \le 4.46$

[Cyburt et al.: 2004]

Matter-radiation eq. [O(eV)]

CMB anisotropies Large Scale Structure

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

67

Cosmic Radiation Density

$$ho_{
m r} = rac{1}{15} \, \pi^2 \; T_{\gamma}^4 \left[1 + rac{7}{8} \, N_{
m eff} \, (\, T_{
u} / \, T_{\gamma})^4
ight]$$

- N_{eff}: Effective number of relativistic ("neutrino") dof
- Instant decoupling: $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- Exact SM expectation: $N_{\rm eff} \simeq 3.04$

[Mangano et al.: 2001]

Probing N_{eff} at different epochs

BBN [$\mathcal{O}(100 \text{ keV})$] Helium fraction 2.10 < $N_{\text{eff}}^{\text{BBN}}$ < 4.46

[Cyburt et al.: 2004]

Matter-radiation eq. [O(eV)]

CMB anisotropies Large Scale Structure

6

Effect on CMB Angular Power Spectrum

 N_{eff} affects time of matter-radiation equality, sound horizon at decoupling —> shifts CMB peaks

Effect on CMB Angular Power Spectrum

 N_{eff} affects time of matter-radiation equality, sound horizon at decoupling —> shifts CMB peaks

• Degeneracy between N_{eff} and $(h, \Omega_m h^2, \text{ and normalisation})$

Results of post-WMAP3 Analyses

95% c.l. (" 2σ ") intervals

New physics?! Or just systematics?

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

< 🗗 ▶

Construction of Credible Intervals

Bayesian

"What are the most likely values?"

 $Posterior \longrightarrow marginalisation$

- Central interval \leftrightarrow median
- ► Minimal interval ↔ mode

Non-Bayesian

"Which values fit the data well?"

 $Likelihood \longrightarrow maximisation$

• $\Delta \chi^2 = N^2$ determines " $N\sigma$ "-interval

Construction of Credible Intervals

Bayesian

"What are the most likely values?"

 $Posterior \longrightarrow marginalisation$

- ► Central interval ↔ median
- ► Minimal interval ↔ mode

Non-Bayesian

- "Which values fit the data well?"
 - $\textbf{Likelihood} \longrightarrow maximisation}$
- $\Delta \chi^2 = N^2$ determines " $N\sigma$ "-interval

< 🗇 >

Degeneracies and Ly- α

 Ly-α data prefers high values of normalisation

[McDonald et al.: 2006]

 Bias towards larger values of N_{eff} (and Ω_ch², h)

J. Hamann (TU München)

< 🗇 >

Galaxy Power Spectrum and Non-linearities

- Nonlinear effects at scales $k \gtrsim 0.1$ h/Mpc
- Conservative approach: fit only large scale data
- More speculative:

$$\mathcal{P}_{g}(k) = b^{2} \frac{1 + Q_{nl} k^{2}}{1 + A_{g} k} \mathcal{P}_{dm}^{lin}(k)$$

[Cole et al.: 2005]

< (F) >

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

Corrections to the Linear Power Spectrum

$$\mathcal{P}_{\mathsf{g}}(k) = b^2 \, rac{1+Q_{\mathsf{nl}}\,k^2}{1+A_g\,k}\, \mathcal{P}_{\mathsf{dm}}^{\mathsf{lin}}(k)$$

- Fitted to (vanilla!) simulations
- May not apply to all surveys (problematic with SDSS main)

```
[Cole, Sanchez: 2007]
```

► Introduce new degeneracy (between Q_{nl} and N_{eff}) → bias for non-flat priors on Q_{nl}

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

Brighton, August 22

< 🗗 >

Our results

	Bayesian CCI $ \langle N_{\rm eff} \rangle ^{68\%\uparrow, \ 95\%\uparrow}_{68\%\downarrow, \ 95\%\downarrow} $		Bayesian MCI $\hat{N}_{\text{eff}}^{(1)} \begin{array}{c} 68\%\uparrow, 95\%\uparrow\\ 68\%\downarrow, 95\%\downarrow \end{array}$		$ \begin{array}{c} \text{Maximisation} \\ \hat{N}_{\text{eff}} \begin{array}{c} 1\sigma\uparrow, \ 2\sigma\uparrow \\ 1\sigma\downarrow, \ 2\sigma\downarrow \end{array} \end{array} $	
Data	$0.2 \le h \le 2.0$	$0.4 \leq h \leq 1.0$	$0.2 \le h \le 2.0$	$0.4 \leq h \leq 1.0$	$0.2 \leq h \leq 2.0$	$0.4 \leq h \leq 1.0$
WMAP	$22 \begin{array}{c} 37, \ 46 \\ 7.3, \ 2.6 \end{array}$	$5.8 \ {}^{8.8, \ 11}_{3.0, \ 1.5}$	$6.8 \begin{array}{c} {}^{32, \ 45}_{2.8, \ 1.5} \end{array}$	$4.2 \begin{array}{c} 7.9, \ 11 \\ 2.2, \ 1.2 \end{array}$	$3.9 \stackrel{6.1, \ 27}{_{1.5, \ 0.6}}$	$3.9 \stackrel{6.1, 12}{_{1.5, 0.6}}$
+SDSS-DR2-Q	$14 \begin{array}{c} 26, & 37 \\ 3.6, & 1.2 \end{array}$	$4.8 \stackrel{7.7, 10}{_{2.1, 1.0}}$	$3.6 \stackrel{18, 34}{_{0.6, 0.0}}$	$3.7 \stackrel{6.4, 9.7}{_{1.1, 0.7}}$	$2.6 \stackrel{5.6, 14}{_{1.0, 0.3}}$	$2.3 \stackrel{5.6, 11}{_{1.0, 0.6}}$
+SDSS-DR2-lin	$11 \begin{array}{c} 20, \ 32 \\ 3.0, \ 1.2 \end{array}$	$4.9 \ {}^{8.0, \ 10}_{2.0, \ 0.7}$	$3.6 \stackrel{13, 28}{_{0.7, 0.3}}$	$4.3 \substack{6.5, 9.9 \\ 0.9, 0.5}$	$3.2 \stackrel{5.1, 12}{_{1.2, 0.2}}$	$3.2 \stackrel{5.1, 11}{_{1.3, 0.2}}$
+2dF-Q	$3.2 \stackrel{5.2, 8.4}{_{1.1, 0.3}}$	$2.6 \stackrel{4.3}{_{1.1}}, \stackrel{5.7}{_{0.4}}$	$1.6 \stackrel{4.2, 7.5}{_{0.4, 0.0}}$	$1.4 \stackrel{3.9}{_{0.7, 0.0}} \stackrel{5.5}{_{0.0}}$	$1.5 \stackrel{2.4, 5.3}{_{0.6, -}}$	$1.5 \begin{array}{c} 2.4, \ 5.0 \\ 0.6, \ - \end{array}$
+2dF-lin	$4.6 \stackrel{7.1, 10}{_{2.2, 1.1}}$	$4.4_{\ 2.1,\ 1.1}^{\ 6.8,\ 9.6}$	$2.9 \stackrel{5.8}{_{1.3}}, \stackrel{9.5}{_{0.6}}$	$3.2 \stackrel{5.7, 9.4}{_{1.4, 0.7}}$	$2.6 \stackrel{4.5, 7.9}{_{1.2, 0.6}}$	$2.6 \stackrel{4.5, 7.9}{_{1.2, 0.6}}$
+SDSS-LRG-Q	$3.5 \ {}^{5.1, \ 7.4}_{2.0, \ 1.1}$	$3.5 \stackrel{5.1}{_{2.0, 1.1}} \stackrel{7.4}{_{1.1}}$	$2.6 \stackrel{4.5, 6.9}{_{1.5, 0.8}}$	$2.5 \stackrel{4.5, 6.9}{_{1.5, 0.8}}$	$2.7 \stackrel{4.1, \ 6.3}{_{1.5, \ 0.8}}$	$2.7 \stackrel{4.1, \ 6.3}{_{1.5, \ 0.8}}$
+SDSS-LRG-lin	$4.0 \begin{array}{c} 5.8, & 9.4 \\ 2.1, & 1.2 \end{array}$	$3.5_{\ 2.1,\ 1.3}^{\ 5.0,\ 6.6}$	$2.6 \stackrel{4.9}{_{1.5}} \stackrel{8.4}{_{0.7}}$	$2.8 \stackrel{4.6, \ 6.3}{_{1.8, \ 1.1}}$	$2.7 \stackrel{4.3, \ 6.2}{_{1.8, \ 0.8}}$	$2.7 \stackrel{4.0, \ 6.2}{1.8, \ 1.2}$
+BAO	$3.5 \ {}^{5.0, \ 6.8}_{2.1, \ 1.1}$	$3.5 \ {}^{5.0, \ 6.8}_{2.1, \ 1.1}$	$2.8 \stackrel{4.7, \ 6.4}{_{1.8, \ 0.8}}$	$2.8 \stackrel{4.7, \ 6.4}{1.8, \ 0.8}$	$2.1 \stackrel{4.7, \ 6.6}{_{1.4, \ 0.9}}$	$2.1 \stackrel{4.7, \ 6.6}{_{1.4, \ 0.9}}$
+SNIa	$20_{6.4, 2.3}^{34, 44}$	$5.9_{\ 2.8,\ 0.9}^{\ 9.1,\ 11}$	$4.3_{2.8, 0.4}^{28, 42}$	$4.1_{\ 2.4,\ 0.9}^{\ 8.7,\ 11}$	$3.6_{\ 1.4,\ 0.3}^{\ 6.3,\ 24}$	$3.6 \stackrel{6.3, 12}{_{1.6, 0.3}}$
+HST	$3.9 \ {}^{5.7, 8.3}_{2.1, 1.2}$	$4.0_{\ 2.4,\ 1.4}^{\ 5.7,\ 7.5}$	$3.3 \stackrel{5.1, 7.7}{_{1.6, 0.8}}$	$3.6 \stackrel{5.3, 7.0}{_{2.1, 1.0}}$	$2.9 \stackrel{4.6, 7.6}{_{1.6, 0.4}}$	$2.9 \stackrel{4.5, \ 6.4}{_{1.6, \ 0.9}}$
$+Ly\alpha$	$7.6 \begin{array}{c} ^{10, \ 13} \\ _{5.2, \ 3.6} \end{array}$	$6.9 \; {}^{9.0, \; 11}_{4.9, \; 3.5}$	$6.8 \begin{array}{c} 9.3, \ 12 \\ 4.6, \ 3.3 \end{array}$	$6.4 \ {}^{8.8, \ 11}_{4.6, \ 3.2}$	$6.6 \ {}^{8.0, \ 12}_{4.9, \ 3.3}$	$6.6 \begin{array}{c} 7.7, \ 10 \\ 5.3, \ 3.3 \end{array}$
All-lin	_	$2.9 \stackrel{4.0, 5.3}{_{1.8, 1.1}}$	_	$2.6 \stackrel{3.7}{_{1.5}} \stackrel{5.1}{_{0.9}}$	_	$2.7 \stackrel{3.3, 5.0}{_{1.5, 0.8}}$
All-lin+HST	_	$2.8 \stackrel{3.7, 4.9}{_{1.9, 1.3}}$	_	$2.6 \stackrel{3.6}{_{1.8}}, \stackrel{4.8}{_{1.1}}$	_	$2.7 \stackrel{3.2, 4.5}{_{2.0, 1.1}}$
All-Q	_	$2.3_{1.4, 0.7}^{3.2, 4.4}$	_	$2.0_{1.2, 0.5}^{3.1, 4.1}$	_	$2.0 \stackrel{2.4}{_{1.3}}, \stackrel{4.0}{_{0.6}}$
All-Q+HST	_	$2.5 \stackrel{3.5, 4.3}{_{1.6, 1.0}}$	_	$2.4 \stackrel{3.3, 4.3}{_{1.6, 0.9}}$	-	$2.2 \stackrel{2.7}{_{1.6}}, \stackrel{3.8}{_{0.9}}$
All-Q+Ly α	_	$4.4 \stackrel{5.5, 6.9}{_{3.3, 2.4}}$	_	$4.4 \stackrel{5.4, \ 6.6}{_{3.2, \ 2.3}}$	-	$4.2 \stackrel{4.7, \ 6.4}{_{3.4, \ 2.4}}$
$_{\rm All-Q+Ly\alpha+HST}$		$3.9 \stackrel{4.8}{_{3.0, 2.3}} \stackrel{5.9}{_{2.3}}$	—	$3.8 \stackrel{4.7, 5.8}{_{2.9, 2.2}}$		$4.0 \begin{array}{c} 4.3, \ 5.6 \\ 3.1, \ 2.3 \end{array}$

[JH, Hannestad, Raffelt, Wong: 2007]

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

< @ >

- WMAP3 alone with wide prior on *h*: $N_{\text{eff}} < 45$
- Adding reasonable prior 0.4 ≤ h ≤ 1, or LSS data tightens constraints considerably
- More constraining data —> less difference between different interval constructions (gaussianity)

Summary

Vanilla+N_{eff}

Conservative (linear data only):

 $1.1 \le N_{\rm eff} \le 4.8$, best fit: 2.6

Aggressive (all data):

 $2.2 \le N_{\rm eff} \le 5.8$, best fit: 3.8

Extended models

• N_{eff} massive species + α_{S} +*w*:

 $1.2 \le N_{\rm eff} \le 6.4$, best fit: 2.6

▶ 3 massive neutrinos, $(N_{\rm eff} - 3)$ massless species:

 $0 \le N_{\rm eff} - 3 \le 3.7$, best fit: 0.2

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

Summary

Vanilla+N_{eff}

Conservative (linear data only):

 $1.1 \le N_{\text{eff}} \le 4.8$, best fit: 2.6

Aggressive (all data):

 $2.2 \le N_{\rm eff} \le 5.8$, best fit: 3.8

Extended models

• N_{eff} massive species + α_{S} +w:

 $1.2 \le N_{\rm eff} \le 6.4$, best fit: 2.6

▶ 3 massive neutrinos, $(N_{\rm eff} - 3)$ massless species:

 $0 \le N_{\text{eff}} - 3 \le 3.7$, best fit: 0.2

J. Hamann (TU München)

Constraining the Cosmic Radiation Density

- No evidence for additional relativistic degrees of freedom
- Systematic effects can bias parameter estimation
- Need better understanding of scale-dependent bias
- You should use the minimal credible interval!