
Baryonic Acoustic Oscillations via the 
Renormalization Group

Massimo Pietroni - Infn Padova

• Motivations: non-linear effects on the power 
spectrum in the BAO range

• RG approach: The emergence of an intrinsic 
UV cutoff

• Results

based on astro-ph/0702653, astro-ph/0703563 (JCAP), with Sabino Matarrese
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Figure 1. Baryon acoustic oscillations in 

(a) the CMB temperature fluctuation power 

spectrum (Bennett et al. 2003), (b) the 

SDSS Luminous Red Galaxy Survey 

(Eisenstein et al. 2005) and (c) in a 

simulated WFMOS survey of 600 deg
2
 at 

0.5<z<1.3 and 2 million galaxy redshifts. 

Figure 2. The power spectrum of dark  

matter and galaxies (points) compared to 

linear theory (solid line)  at z=1 from the 

Millennium simulation (Springel et al. 

2005) with galaxies inserted using the 

semi-analytic approach of Baugh et al 

2005. On large scales the linear peaks are  

preserved (see WFMOS feasibility report 

for more details + other similar tests). 

(a) (b) 

(c) 

A standard ruler: Baryonic Acoustic Oscillations

Goal: predict the LSS power spectrum to % accuracy

P(k)/Pref(k)

peaks are a small effect.
require large surveys to detect.

Ex.: BAO from WFMOS
(2M galaxies at 0.5<z<1)3)

Nishimichi et al ‘07



Present Status: Pert. Theory

z=0

z=1

Scoccimarro, ‘04

Jeong Komatsu, ‘06

1-loop PT

Non-linearities becomes more and more 

relevant in the DE-sensitive range 0<z<1



Standard Approach: N-body simulations+fitting functions

Fig. 6. The real space power spectrum of the dark matter at z = 0 for one of our
simulations along with two ansätze commonly used in the literature (see text). The
lower panel shows the ratio of the fits and N-body points to the smooth spectrum
of (35).

as it implicitly assumes that there exists a 1 − 1 mapping between linear and
non-linear power. While not an issue for smoothly varying spectra, this causes
problems when the spectrum contains features such as the baryon oscillations.
In reality mode coupling erases features, whereas the mapping procedure en-
hances them. We could reduce some of the discrepancy by using a broad band
measure of the slope in the fitting function, but the underlying problem still
remains. The halo-model based methods perform better in this regard, as ex-
pected (54), since they model the non-linear power with an integral over the
linear theory power spectrum. None of the fitting formulae approach percent
level accuracy in the non-linear regime.

6.2 Galaxies

Now we turn to the mock galaxy catalogs. We show the results at z = 1 for one
of our HOD prescriptions, with n̄ = 10−3 h3Mpc−3 and b " 2, in Fig. 7 along
with the predictions of linear theory multiplied by b2. The power is biased

20

Huff et al, ‘06

5-10% discrepancies between fitting functions and simulations

(real space                 redshift space, not trivial)



• Improve Pert. Theory towards lower z and higher k

• Study the effect of non-linearities on baryonic acoustic 
oscillations

Goals



The hydrodynamical equations for density and velocity perturbations,

∂ δ

∂ τ
+∇ · [(1 + δ)v] = 0 ,

∂ v
∂ τ

+Hv + (v ·∇)v = −∇φ ,

can be written in a compact form (we assume an EdS model):

where

and the only non-zero components of the vertex are

(δab∂η + Ωab) ϕb(η,k) = eηγabc(k, −k1, −k2) ϕb(η,k1) ϕc(η,k2)

Compact Perturbation Theory
Crocce, Scoccimarro ‘05
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Extension to other cosmologies

η = log
a

ain
−→ η = log

D+

D+
in

where       is the linear growth factorD+

Bouchet et al. ‘92
Bernardeau ‘94
Nusser et al ‘98

The initial ‘time’ η=0 corresponds to z=zin, chosen
well inside the linear epoch. 
In practice, we take zin=80.



An action principle
The fluid equations can be derived by varying the action:

where the auxiliary field               has been introduced and                    is the retarded propagator:    χa(η, k)

S =
∫

dη1dη2 χa g−1
ab ϕb −

∫
dη eη γabc χa ϕb ϕc

gab(η1, η2)

growing mode decaying mode

(δab∂η + Ωab) gbc(η, η′) = δac δD(η − η′)

so that ϕ0
a(η,k) = gab(η, η′)ϕ0

b(η
′,k) is the solution of the linear equation

Explicitly, one finds:

Initial conditions:

Matarrese, M.P., ‘07

g(η1, η2) =
{
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The generating functional

Z[J, Λ] =
∫
DϕDχ exp

{∫
dη1dη2

[
−1

2
χg−1PLgT−1

χ + iχg−1 ϕ

]
− i

∫
dη [eηγ χϕϕ− Jϕ−Λχ]

}

valid for Gaussian initial 
conditions, encoded in the power spectrum: PL

ab(η, η′; k) ≡
(
g(η)P0(k)gT (η′)

)
ab

Derivatives of Z w.r.t.  the sources J and Λ give all the N-point correlation 
functions (power spectrum, bispectrum, ...) and the full propagator 



+ +  2

Compact Diagrammar

b

b

b

a

a

a

c

propagator (linear growth factor):

power spectrum:

interaction vertex:

−i gab(ηa, ηb)

PL
ab(ηa, ηb; k)

Example: 1-loop correction to the density power spectrum:

a.k.a. “P22” a.k.a. “P13”

1 1 1 1 1 1

All known results in cosmological perturbation theory are expressible in 
terms of diagrams in which only a trilinear fundamental interaction appears

−i eη γabc(ka, kb, kc)



Beyond perturbation theory: the renormalization group
Inspired by applications of  Wilsonian RG to field theory : the RG parameter is momentum

Modify the primordial (z=zin) power spectrum as:

then, plug it into the generating functional: 

The evolution from            to              can be described non-perturbatively 
by RG equations:

(step function)

Z[J, Λ] −→ Zλ[J, Λ]

Zλ[J, Λ] =
∫
DϕDχ exp

{∫
dη1dη2

[
−1

2
χg−1PL

λgT−1
χ + iχg−1 ϕ

]
− i

∫
dη [eηγ χϕϕ− Jϕ−Λχ]

}

λ = 0 λ =∞

∂
∂λZλ =

∫
dη dη′

[
1
2

∂
∂λ

(
g−1PL

λ g−1T
)

ab

δ2Zλ
δΛbδΛa

]

P 0
λ(k) = P 0(k) Θ(λ− k)



The propagator

Wλ[J, Λ] = −i log Zλ[J, Λ]δ(3)(k + k′) Gλ,ab(k; ηa, ηb) = − δ2Wλ[J, Λ]
δJa(k, ηa)δΛb(k′, ηb)

∂

∂λ

δ2Wλ

δJa δΛb
=

1
2

∫
dηcdηd d3q δ(λ− q)

(
g−1PLg−1T

)

cd

δ4Wλ

δJa δΛb δΛc δΛd

in pictures...

infinite tower of RGE’s

d / d! 1/2
a b

= + 1/2

a

a

b

b

1PI

RG Kernel:     δ(λ− q) Gλ(q; η, 0)P 0(q)GT
λ (q; η′, 0)



Approximation: full, 1PI, vertices                 tree-level vertices

Large momentum, k >> λ: it can be integrated analytically!

Gλ, ab(k; ηa, ηb) = gab(ηa, ηb) exp
[
−k2σ2

λ

2
(eηa − eηb)2

]

where σ2
λ =

1
3

∫
d3q

P 0(q)
q2

θ(λ− q)



in perturbation theory, it can be obtained by summing the infinite series of 
chain diagrams (Crocce Scoccimarro, ‘06)

+ + +
... ...

physically, it represents the effect of multiple interactions of the k-mode
with the surrounding modes 

kk k k

`coherence momentum’

in the BAO range!

G ∼ e−
k2σ2

2 e2η

kch = (σ eη)−1 ! 0.15 hMpc−1



A self-generated UV cutoff

Inserting this result in the expression for the RG kernel, we get:

The effect of modes with momenta larger than                           
is exponentially screened. 

σ−1
λ (eη − 1)−1

The UV is much better behaved than one would guess from `usual’ 
perturbation theory!!

Kλ(q; η, η′) = δ(λ− q) P 0(q) exp
[
−q2σ2

λ

2

(
(eη − 1)2 + (eη′

− 1)2
)]

Kλ(q; η, η′) −→ δ(λ− q) P 0(q) (1 + O(q2σ2e2η))



The power spectrum

Pab = P I
ab + P II

abThe full PS has the structure:

with P I
ab(k; ηa, ηb) = Gac(k; ηa, 0)Gbd(k; ηb, 0)P 0

cd(k)

P II
ab (k; ηa, ηb) =

∫ ηa

0
ds1

∫ ηb

0
ds2 Gac(k; ηa, s1)Gbd(k; ηb, s2)Φcd(k; s1, s2)

d /d!

= +

= + 1/2+

a

a

aa

b

bbb

P IIP IP
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∂λΦab, λ(k; s1, s2) = 4 es1+s2

∫
d3q δ(λ− q)P I

dc,λ(q; s1, s2)×

Pfe,λ(|q− k|; s1, s2) γadf (k,−q,−k + q)γbce(−k,q,k− q)

again, tree-level vertices...

accuracy of linear theory up to k~0.12 h/Mpc
is fortuitous: cancellation between two large
non-linear effects 
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ΩΛ =0.73, Ωb=0.043  h=0.7
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Conclusions

Future lines of development include: including the running of the vertex, computing the bispectrum, non-
gaussian initial conditions.

RG techniques can be conveniently applied to cosmology; Exact RG equations can be derived for any 
kind of correlation function; Systematic approximation schemes, based on truncations of the full 
hierarchy of equations, can be applied, borrowing the experience from field theory.

A simple approximation scheme already shows the emergence of an intrinsic UV cutoff in the RG 
running.

RG-improved results on the power spectrum agree with existing N-body simulations better than any 
other approach (see also Crocce and Scoccimarro, arXiv: 0704.2783).


