Kinematics of string junctions

Tom Kibble, Imperial College (with Ed Copeland and Dani Steer)

COSMO 07

Ref: hep-th/0601153 (PRL 97 (2006) 021602), hep-th/0611243 (PRD 75 (2007) 065024)

Outline

Motivation: Strings with junctions – abelian and non-abelian

Kinematics of string junctions:

- e.o.m. for junctions of 3 Nambu-Goto strings
- general solution

Collisions of straight strings: can they intercommute?

- kinematical constraints on angle and velocity
- possibility of 'locking' for non-abelian strings

Rates of change of string lengths

 light strings tend to grow at the expense of heavy ones (? important for network evolution)

Average string velocity

reduced near a junction

Strings with junctions

 Type-I strings $\mu_2 < 2\mu_1$ m+n • \mathbb{Z}_3 strings 3-colour strings (p_1, q_1) • (p,q) strings: composites of $(p_1 + p_2, q_1 + q_2)$ *p* F-strings and *q* D-strings (p_2, q_2) k non-abelian strings, e.g. biaxial nematics (brick-shaped molecules) classified by $\{\pm 1, \pm i, \pm j, \pm k\}$ where $i^2 = -1$, ij = k, etc.

[Toulouse & Poénaru 1976, 1977, Volovik & Mineev 1977]

Junctions of Nambu–Goto strings

Use gauge conditions:
$$\dot{x}^2 + {x'}^2 = 0$$
, $\dot{x} \cdot x' = 0$
with $\dot{x} = \partial_{\tau} x$, $x' = \partial_{\sigma} x$
(conformal gauge) and $\tau = t = x^0(\sigma, \tau)$,
 $\Rightarrow x(\sigma, t) = (t, \mathbf{x}(\sigma, t))$, $\dot{\mathbf{x}}^2 + {\mathbf{x'}}^2 = 1$, $\dot{\mathbf{x}} \cdot {\mathbf{x'}} = 0$

Take σ on each leg *j* to increase towards the vertex, position X(t)

$$S = -\sum_{j} \mu_{j} \int dt \, d\sigma \, \theta(s_{j}(t) - \sigma) \sqrt{\mathbf{x}_{j}^{\prime 2} (1 - \dot{\mathbf{x}}_{j}^{2})}$$

$$+ \sum_{j} \int dt \, \mathbf{f}_{j}(t) \cdot [\mathbf{x}_{j}(s_{j}(t), t) - \mathbf{X}(t)] \qquad \mu_{j} = \text{string tension}$$

$$_{4}$$

Solving equations of motion

Varying
$$\mathbf{x}_{j} \Rightarrow \ddot{\mathbf{x}}_{j} - \mathbf{x}_{j}'' = \mathbf{0} \Rightarrow$$

 $\mathbf{x}_{j}(\sigma,t) = \frac{1}{2}[\mathbf{a}_{j}(\sigma+t) + \mathbf{b}_{j}(\sigma-t)]$ with $\mathbf{a}_{j}'^{2} = \mathbf{b}_{j}'^{2} = 1$
Boundary terms $\Rightarrow \mu_{j}(\mathbf{x}_{j}' + \dot{s}_{j}\dot{\mathbf{x}}_{j}) = \mathbf{f}_{j}$ at $(s_{j}(t),t)$
Varying $\mathbf{f}_{j} \Rightarrow \mathbf{X}(t) = \mathbf{x}_{j}(s_{j}(t),t) = \frac{1}{2}[\mathbf{a}_{j}(s_{j}+t) + \mathbf{b}_{j}(s_{j}-t)]$
Initial conditions at $t = 0 \Rightarrow$ values of $\mathbf{b}_{j}'(s_{j}(t) - t)$
(ingoing waves) are known, but not those of $\mathbf{a}_{j}'(s_{j}(t) + t)$
(outgoing waves); use $(1+\dot{s}_{j})\mathbf{a}_{j}' = (1-\dot{s}_{j})\mathbf{b}_{j}' + 2\dot{\mathbf{X}}$
Varying $\mathbf{X} \Rightarrow \sum_{j} \mathbf{f}_{j} = \mathbf{0} \Rightarrow (\mu_{1} + \mu_{2} + \mu_{3})\dot{\mathbf{X}} = -\sum_{j} \mu_{j}(1-\dot{s}_{j})\mathbf{b}_{j}'$
To find \dot{s}_{j} , we impose $\mathbf{a}_{j}'^{2} = 1$

Solution for S_i $a'_{i}^{2} = 1 \implies \text{eqs for } \dot{s}_{i} \text{ in terms of } c_{ii} = b'_{i}(s_{i} - t) \cdot b'_{i}(s_{i} - t)$ Solution (differential equations for s_i): $\frac{\mu_1(1-\dot{s_1})}{\mu_1+\mu_2+\mu_3} = \frac{M_1(1-c_{23})}{M_1(1-c_{23})+M_2(1-c_{31})+M_3(1-c_{12})}$ etc. where $M_1 = \mu_1^2 - (\mu_2 - \mu_3)^2$ etc. Corollary: since $\dot{s}_i < 1$ and $c_{ii} < 1$ all $M_i > 0$ i.e. μ_i satisfy triangle inequalities (obvious if $\mathbf{X} = \mathbf{0}$) — e.g. if $\mu_3 > \mu_1 + \mu_2$ string 3 is unstable Note: summing 3 eqs. $\Rightarrow \mu_1 \dot{s}_1 + \mu_2 \dot{s}_2 + \mu_3 \dot{s}_3 = 0$ (energy conservation) 6

Collision of straight strings $(\mu_1 = \mu_2)$ Take $\mu_1 = \mu_2$ and, for t < 0, $\mathbf{x}_{1,2}(\sigma,t) = (-\gamma^{-1}\sigma\cos\alpha, \mp\gamma^{-1}\sigma\sin\alpha, \pm vt)$

$$\Rightarrow \mathbf{a}'_{1,2} = (-\gamma^{-1}\cos\alpha, \mp\gamma^{-1}\sin\alpha, \pm v)$$
$$\mathbf{b}'_{1,2} = (-\gamma^{-1}\cos\alpha, \mp\gamma^{-1}\sin\alpha, \mp v)$$

If 1,2 exchange partners, and are joined by 3, it must lie on *x* or *y* axis (for small α or large α , resp.?) Assume *x*-axis. Then for *t* > 0,

$$\mathbf{x}_{3}(\sigma,t) = (\sigma,0,0), \quad \mathbf{a}_{3}' = \mathbf{b}_{3}' = (1,0,0)$$

Consider vertex **X** on right

Collision of straight strings (continued)

$$X(t) = s_{3}(t)(1,0,0)$$

$$K_{1,2}(t) = t(\gamma^{-1}\cos\alpha, \pm\gamma^{-1}\sin\alpha, \pm v)$$

$$\mu_{1}\dot{s}_{1} + \mu_{1}\dot{s}_{2} + \mu_{3}\dot{s}_{3} = 0 \implies$$

$$\dot{s}_{1} = \dot{s}_{2} = -\frac{\mu_{3}}{2\mu_{1}}\dot{s}_{3}$$

Now $c_{12} = \mathbf{b}_1' \cdot \mathbf{b}_2' = \gamma^{-2} \cos 2\alpha - v^2$ $c_{13} = \mathbf{b}_1' \cdot \mathbf{b}_3' = -\gamma^{-1} \cos \alpha = c_{23}$ $\Rightarrow \dot{s}_3 = \frac{2\mu_1 \gamma^{-1} \cos \alpha - \mu_3}{2\mu_1 - \mu_3 \gamma^{-1} \cos \alpha}$

8

Implications

 $\dot{s}_{3} = \frac{2\mu_{1}\gamma^{-1}\cos\alpha - \mu_{3}}{2\mu_{1} - \mu_{3}\gamma^{-1}\cos\alpha} \quad \text{with} \quad \mu_{3} < 2\mu_{1}$ But $\dot{s}_{3} > 0$, so for 3 along x axis, $\alpha < \arccos\left(\frac{\mu_{3}\gamma}{2\mu_{1}}\right)$ Similarly, for 3 along y axis, $\alpha > \arcsin\left(\frac{\mu_{3}\gamma}{2\mu_{1}}\right)$ Kinematically allowed regions are:

Implications (continued)

Note: **neither** is possible unless
$$\gamma < \frac{2\mu_1}{\mu_3}$$

e.g., if $\mu_3 = \mu_1$, we require $v < \frac{\sqrt{3}}{2}$

What happens if this limit is violated?

For **abelian** strings, the only possibility is that they pass through each other without exchanging partners.

Non-abelian strings

Gauge potential **A** is a one-form with values in Lie algebra of **G**

Quantum number or flux on a string is $\gamma = \int_{C} \mathbf{A}$

For non-abelian strings, γ is path-dependent, e.g.:

$$\gamma \in \mathbf{Q} = \{\pm 1, \pm i, \pm j, \pm k\}$$

 $i^2 = -1, \quad ij = k,$

If strings with $\gamma_1 = i$, $\gamma_2 = j$ pass through each other without exchanging partners, they **must** become linked by a string with $\gamma_3 = -1$

Linkage in z direction

Non-abelian strings with $[\gamma_1, \gamma_2] \neq 0$ cannot pass through one another, and may become linked by a string along *z* axis.

Here
$$c_{12} = 2v^2 - 1$$
, $c_{13} = c_{23} = -v$
 $\Rightarrow \dot{s}_3 = \frac{2\mu_1 v - \mu_3}{2\mu_1 - \mu_3 v} \Rightarrow v > \frac{\mu_3}{2\mu_1}$
Linking in *x* or *y* dir. required $\gamma < \frac{2\mu_1}{\mu_3}$
So if $\mu_3 > \sqrt{2}\mu_1$ there is a range of
velocities for which the strings cannot
move apart, linked in **any** direction;
they become locked.

Kinematic constraints

Allowed regions of the α - ν plane for links along 3 axes:

Abelian strings, in white or z region, must pass through one another.

Non-abelian-strings, in *z* region, may be linked along the *z* axis; in white region, they will be locked.

Collisions with $\mu_1 \neq \mu_2$ $\boldsymbol{x}_{12}(\sigma,t) = (-\gamma^{-1}\sigma\cos\alpha, \mp\gamma^{-1}\sigma\sin\alpha, \pm vt)$ Ð $\Rightarrow \mathbf{a}'_{12} = (-\gamma^{-1}\cos\alpha, \mp\gamma^{-1}\sin\alpha, \pm v)$ $\boldsymbol{b}_{12}' = (-\gamma^{-1}\cos\alpha, \mp\gamma^{-1}\sin\alpha, \mp v)$ $\boldsymbol{x}_{3}(\sigma,t) = (\gamma_{\mu}^{-1}\sigma\cos\theta,\gamma_{\mu}^{-1}\sigma\sin\theta,ut),$ Unknowns *u* and θ are given by $\frac{\tan \theta}{\tan \theta} = \frac{u}{u}$ and $\mu_{-}^{2}(\sin^{2}\alpha)u^{4} + [\mu_{3}^{2}(1-v^{2}) + \mu_{-}^{2}(v^{2}\cos^{2}\alpha - \sin^{2}\alpha)]u^{2} - \mu^{2}v^{2}\cos^{2}\alpha = 0$ where $\mu_{-} = \mu_{1} - \mu_{2}$ Constraints found as before from $\dot{s}_3 \ge 0$

14

Kinematic constraints with $\mu_1 \neq \mu_2$

Labels are (μ_1, μ_2, μ_3) with

$$\mu_1 + \mu_2 + \mu_3 = 3$$

Allowed regions for an *x*-link are to the **left** of the curves

Those for a *z*-link are **above** the horizontal lines

Regions expand if

 μ_3 decreases or $|\mu_1 - \mu_2|$ increases

Distribution of \dot{s}_{j}

Let us assume that the configurations of **incoming** waves on the three strings meeting at a junction are uncorrelated, i.e. b'_1, b'_2, b'_3 are independently randomly distributed on the unit sphere.

What is the distribution of \dot{s}_1 ?

$$P(\dot{s}_{1}) = \frac{1}{8\pi} \int_{-1}^{1} dc_{13} \int_{-1}^{1} dc_{23} \int_{0}^{2\pi} d\phi \delta\left(\dot{s}_{1} - 1 + \frac{\mu M_{1}(1 - c_{23})}{\mu_{1}\mathcal{M}}\right)$$

with $\mu = \mu_1 + \mu_2 + \mu_3$,

$$\mathcal{M} = M_1 (1 - c_{23}) + M_2 (1 - c_{31}) + M_3 (1 - c_{12})$$
$$c_{12} = c_{13} c_{23} + \sqrt{1 - c_{13}^2} \sqrt{1 - c_{23}^2} \cos \varphi$$

Distribution of \dot{s}_1

This may be important for evolution of a network 18

Average string velocity

For Nambu-Goto strings in flat space, $\langle \mathbf{v}^2 \rangle = \frac{1}{2}$. For a string near a junction, we have $\langle \dot{\mathbf{x}}_1^2 \rangle = \frac{1}{2} (1 + \langle \mathbf{a}'_1 \cdot \mathbf{b}'_1 \rangle)$ which gives

$$\left\langle \dot{\boldsymbol{x}}_{1}^{2} \right\rangle = \frac{1}{15} \left(\frac{\mu_{1}^{2} - 13\mu_{-}^{2}}{\mu_{1}^{2} - \mu_{-}^{2}} + \frac{(4\mu_{1} - \mu_{-})(\mu_{1} + \mu_{-})^{2}}{\mu_{1}(\mu_{1} - \mu_{-})^{2}} \ln \frac{2\mu_{1}}{\mu_{1} + \mu_{-}} + \frac{(4\mu_{1} + \mu_{-})(\mu_{1} - \mu_{-})^{2}}{\mu_{1}(\mu_{1} + \mu_{-})^{2}} \ln \frac{2\mu_{1}}{\mu_{1} - \mu_{-}} \right)$$

where $\mu_{-} = \mu_{2} - \mu_{3}$

Note: $\langle \dot{\mathbf{x}}_1^2 \rangle$ depends only on μ_1 and μ_- , not $\mu_+ = \mu_2 + \mu_3$

Lower rms velocity may affect the network evolution

Conclusions

Equations of motion and general solution for 3-string junctions

Collisions of straight strings: kinematic constraints on angle and velocity for which exchange of partners is possible — less severe if joining string is light or — if colliding strings have very different tension

Rates of growth: light strings tend to grow at the expense of heavier strings; even for equal tensions, it is most likely that one string grows while two shrink

Average velocity: rms velocity of string near a junction is (modestly) reduced

These results may be important in studies of evolution of a network of strings with junctions