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Calabi-Yau Compactifications

e 6d manifolds with special properties

o cycles and holes related to particle content.




Moduli fields

e The metric in the extra dimensions (sizes and shapes
of cycles) depends on continuous parameters called
moduls.

e The parameters of a solution correspond to scalar
fields (unconstrained by EOM, i.e. massless) in four
dimensions.

¢ In a realistic (CY) compactification there can be
many of these moduli fields.




Two types of moduli

e Complex Structure — Shape moduli

o Kahler — Volume.




Moduli Problems

These scalar fields have nonuniversal
couplings to matter:
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* Different types of matter get different accelerations
from these forces, violating the equivalence principle.

* ‘Fitth force’ experiments constrain such forces to
be very weak, but if fields remain massless we do not expect
them to interact with matter more weakly than gravity.

e Moduli can overclose the Universe

Need to stabilise moduli !




String Model
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In IIB RR potentials are:

C0): C2), C(ay, Ce)s Cis)

* Compactity this on a CY manifold and turn on fluxes and
wrap branes to stabilise moduli fields.

Giddings, Kachru, Polchinski 2001
Kachru, Kallosh, Linde, Trivedi 2003

* Study dynamics of brane probes in this background
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Why warping is nice
Randall, Sundrum 1999
e Simple model constructed from branes in AdS.

e Example of warped compactification (spacetime
curves strongly away from the brane).

e Exponential warping produces exponential
hierarchies in scales.

e Provides a concrete mechanism to explain the
large differences between the electroweak and
Planck scales in physics.

e Exponential warping gives exponential flatness

to the inflaton potential (caveat: n.p. effects).
Baumann, Dymarsky, Kebanov, Maldacena, McAllister, Murugan 2006




Model

6d Calabi Yau with fluxes >4 Brane World

KKLMMT 2003 D3 inflaton.
(looks like point)

warped throat region.

(large hierarchy) /
LR < / @ UV

* Moving brane acts
as inflaton & experiences ND7

expansion/contraction as it ¢ Need nonperturbative
moves in the throat effects to stabilise Kéhler
- mirage cosmology moduli.




%}”ped CO”Z](Old Klebanov, Tseytlin 2000

When flux is added warping occurs:

N D3 probe brane
M fractional D3
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Warped Deformed Conifold

Klebanoy, Strassler 2000
e Based on A B

deformed conifold: z:(’wA)2 =z
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Brane Dynamics &

Mirage Cosmology

Kehagias, Kiritsis 1999

e The probe brane evolves according to the DBI
action:

Sppi = —m/d4:1: [h_l(\/l — hv? — 1]

ds® = h M2 (=1 — hv?) dt* + da;dz’) = —dr® + a®(7)dz;dx

scale factor on the brane










e Energy is also conserved and we may plot the
radial velocity in terms of conserved quantities:

o g"e(he +2g) — £3(n)

il (he 4+ q)?

* Introducing angular momentum generates a centrifugal
barrier for the brane.

* Zeros of Q correspond to new turning points.




o KS

* Two types of bounces and cycles.
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DBI(nflation) in the Throat

A moving brane sources inflation. \
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Brane position in throat given by field: @
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e Bounces remain (but not with sufficient efoldings of
inflation).

* Cycles remain when brane passes through the
nonsingular tip.




; y (General properties)
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Non-Gaussianities

e In Special Relativity particles (zero branes)
move with action:

S:/dt\/l—:i:2

* For a brane moving through a warped background:
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Conclusions

e Building rigorous models of inflation in string theory is
new! Specific models make observational predictions
(e.g. cosmic strings, non-gaussianity, gravity waves).

e Considering brane dynamics with angular momentum
and cycling behavior gives rich, new phenomenology:.

e Preliminary work (in progress) indicates angular
momentum will not help much with getting a successful
inflationary scenario... but it can help some.

e The search for observational eftects of spinflation is on:

DAE, Gregory, Mota, Tasinato, Zavala to appear




