The left-right symmetric seesaw mechanism

Thomas Konstandin, KTH, Stockholm

Akhmedov, Blennow, Häggren, T.K., Ohlsson,
hep-ph/0612194,
1. Introduction and Motivation
 - Seesaw mechanism
 - Leptogenesis

2. Left-right Symmetric Models
 - Left-right symmetric seesaw mechanism
 - Leptogenesis
 - Stability

3. Conclusions
 - Conclusions
Neutrino masses are limited by cosmological bounds to be

\[\sum_i m_{\nu_i} \lesssim 1 \text{ eV}. \]

If this mass is only due to the Higgs mechanism, the corresponding Yukawa coupling would be

\[y = \frac{m_\nu}{\nu} \sim 10^{-12}. \]
Seesaw mechanism

This issue can be elegantly resolved by adding a Majorana mass term for the right-handed neutrino to the Lagrangian

$$\mathcal{L} \ni \frac{1}{2} \bar{\nu}_R m_N (\nu_R)^c + \text{h.c.}$$

what leads to the following mass matrix

$$\begin{pmatrix} \bar{\nu}_L \nonumber \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & m_N \end{pmatrix} \begin{pmatrix} \nu_L \nonumber \end{pmatrix}$$

and after block diagonalization in leading order ($m_N \gg m_D$)

$$\begin{pmatrix} \bar{\nu} \nonumber \\ \bar{N} \end{pmatrix} \begin{pmatrix} -m_D \frac{1}{m_N} m_D^T & 0 \\ 0 & m_N \end{pmatrix} \begin{pmatrix} \nu \nonumber \end{pmatrix}.$$
The smallness of the neutrino masses in the type I seesaw

\[m_\nu = -m_D \frac{1}{m_N} m_D^T \]

can be explained by a large (GUT) scale

\[m_N \sim 10^{14} \text{ GeV}, \quad m_\nu \sim 1 \text{ eV}, \quad m_D \sim 100 \text{ GeV}. \]

Additionally, since the Majorana mass term is lepton number violating and CP-violating, this mechanism provides the possibility to explain the baryon asymmetry of the Universe (BAU) via leptogenesis.
The seesaw mechanism provides all prerequisites to produce a baryon asymmetry

- When the temperature of the Universe drops below the mass of the right-handed neutrinos, the neutrinos become over-abundant and decay out-of-equilibrium
- This decay is lepton number violating \((m_N \neq 0)\)
- This decay is CP-violating \((m_N \neq m^*_N)\)
- The sphaleron process converts the lepton asymmetry into a baryon asymmetry
The baryon-to-photon ratio, $\eta_B = (6.1 \pm 0.2) \times 10^{-10}$, can in leading order be parametrized as

$$\eta_B = 3 \times 10^{-2} \eta \epsilon_N$$

where η denotes the efficiency factor of the decays of the lightest right-handed neutrino and ϵ_N the CP asymmetry in its decays into leptons and Higgs particles

$$\epsilon_N = \frac{\Gamma(N_1 \rightarrow l H) - \Gamma(N_1 \rightarrow \bar{l} H^*)}{\Gamma(N_1 \rightarrow l H) + \Gamma(N_1 \rightarrow \bar{l} H^*)}.$$
Leptogenesis

Fukugita, Yanagida, ’86

The L and CP violating part of the decay rate results from a cross term between the tree level decay amplitude and the following loop diagrams

(a) \[\bar{H}_u \rightarrow H^+_H L^f \]

(b) \[\bar{H}_u \rightarrow H^+_H L^f \]

and can in the limit \(m_{N_1} \ll m_{N_2} \) be written

\[
\epsilon_N = \frac{3m_{N_1}}{16\pi v^2} \text{Im}[(m_D^\dagger m_{\nu} m_D^*)_{11}] \cdot \frac{(m_D^\dagger m_D)_{11}}{(m_D^\dagger m_D)_{11}}.
\]
Decay asymmetry

Davidson, Ibarra, ’02

In the type I seesaw model, the decay asymmetry fulfills the Davidson-Ibarra-bound

\[\epsilon_N < \frac{3m_{N_1} \sqrt{|\Delta m_{atm}^2|}}{16\pi v^2}, \quad \sqrt{|\Delta m_{atm}^2|} \approx 0.05 \text{ eV}. \]

This leads to the fact that for viable leptogenesis, \(\epsilon_N \sim 10^{-7} \), a lower bound on the mass of the lightest right-handed is given by

\[m_{N_1} \gtrsim 10^8 \text{GeV} \]

for typical efficiency factors of \(\eta \lesssim 1 \). Besides, this bound is not easily saturated.
In supersymmetric models, the decay of the gravitino into the LSP poses constraints on the reheating temperature (dark matter over-abundance, BBN constraints). Depending on the parameters of the mSUGRA model this bound lies in the range

\[T_R \lesssim 10^7 \text{GeV to } T_R \lesssim 10^{10} \text{GeV} \leftrightarrow m_{N_1} > 10^8 \text{GeV}. \]
Hierarchies in Yukawa couplings and tuning

Motivated by GUT models, one expects a similar hierarchical structure for the Yukawa coupling of the neutrino as found for the other fermions

\[y_{up} \sim y_{\nu}, \quad y_{down} \sim y_{l} \]

Since the neutrino mass matrix has only a mild hierarchy (at least between the two largest elements) and

\[m_{\nu} = -m_{D} \frac{1}{m_{N}} m_{D}^{T} \]

the Majorana mass \(m_{N} \) needs to have the doubled hierarchy of \(m_{D} \).

Hence, hierarchical neutrino Yukawa couplings seem to be unnatural in the seesaw framework.
Open questions in the seesaw mechanism

Hierarchy in the neutrino Yukawa coupling

A hierarchy in the Yukawa couplings, as expected from GUT models requires the doubled hierarchy in the Majorana mass term, what is an unnatural situation.

Gravitino bound

In supersymmetric models, thermal leptogenesis requires rather high reheating temperatures, that can lead to over-closure of the Universe with gravitinos.
Mass generation by the seesaw mechanism

The left-right symmetric framework is based on the gauge group

\[SU(2)_L \times SU(2)_R \times SU(3)_{\text{color}} \times U(1)_{B-L} \]

and contains the following (color singlet) Higgs fields

\[\Phi(2, 2, 0) \]
\[\Delta_L(3, 1, -2) \]
\[\Delta_R(1, 3, 2) \]

By spontaneous symmetry breaking, the neutral components of the Higgs fields obtain vacuum expectation values

\[\langle \Phi^0 \rangle = v \]
\[\langle \Delta^0_L \rangle = v_L \]
\[\langle \Delta^0_R \rangle = v_R \]

The Lagrangian is given by

\[\mathcal{L} \supset f^{\alpha\beta} R_\alpha^T C_i \tau_2 \Delta_R R_\beta + y^{\alpha\beta} \bar{R}_\alpha \Phi L_\beta + f^{\alpha\beta} L_\alpha^T C_i \tau_2 \Delta_L L_\beta + \text{h.c.} \]
The left-right symmetry imposes in this case $m_D = m_D^T$ and the seesaw relation reads

$$m_\nu = m_N \frac{v_L}{v_R} - m_D \frac{1}{m_N} m_D = m_\nu^{\text{II}} + m_\nu^{\text{I}}.$$

Strategy: Use $m_D = m_{up}$ motivated by GUTs/prejudice. The remaining parameters of the model are then:

- The lightest neutrinos mass m_0
- The hierarchy (normal/inverted) of the light neutrinos
- Five Majorana phases (three more than in pure type I)
- The ratio v_R/v_L

This seesaw relation is invertible for given m_ν and m_D and leads to 2^n solutions for m_N in the case of n flavors (with same low energy phenomenology).

Akhemdov, Frigerio, ’05
Small v_R/v_L

In the one-flavor case the solution has a two-fold ambiguity

$$m_N = \frac{m_\nu}{2} \frac{v_R}{v_L} \pm \sqrt{\frac{m_\nu^2}{4} \left(\frac{v_R}{v_L} \right)^2 + m_D^2 \frac{v_R}{v_L}}$$

cancellation: $|m_I| \approx |m_{II}| \gg |m_\nu|$, domination: $m_I \approx m_\nu$ or $m_{II} \approx m_\nu$
Inversion formula

In the three-flavor case, the solutions can be given in closed form what requires to find the roots of a quartic equation.

Analogously to the one-flavor case, the solution in the three-flavor case have a eight-fold ambiguity ($y = y_{up}$).

Pure type II ’+++’: Gravitino problem for $v_R/v_L > 10^{21}$.
The pure type I solution ('− − −') shows a large spread in the right-handed masses and a strong suppression of mixing angles.

Leptogenesis possible? Fine-tuning needed?
In addition there are six mixed cases.

'− − +': Gravitino bound eventually fulfilled. Leptogenesis possible? Stability for $\nu_R/\nu_L > 10^{18}$?
Hambye, Senjanovic, ’03
Antusch, King, ’04

The L and CP violating part of the decay rate results from a cross term between the tree level decay amplitude and the following loop diagrams

and the Higgs triplet leads to an additional contribution.
Leptogenesis

Antusch, King, ’04

In the limit $m_{N_1} \ll m_{N_2}, m_\Delta$ the asymmetry can be written

$$
\epsilon_{N_1} = \frac{3m_{N_1}}{16\pi v^2} \text{Im}[(m_D^\dagger (m_{I\nu} + m_{II\nu}) m_D^*)_{11}] \cdot \frac{1}{(m_D^\dagger m_D)_{11}}.
$$

Due to the modified seesaw formula, the DI-bound is avoided, but leads to the slightly weaker bound

$$
\epsilon_{N_1} \sim \frac{3m_{N_1} m_{\nu,\text{max}}}{16\pi v^2}
$$

and hence

$$
m_{N_1} \gtrsim 3 \times 10^7 \text{GeV}.
$$

This bound is only slightly better than in the pure type I case, but easier to saturate due to additional Majorana phases.
For example, in the one-flavor case, the relative phase κ between m_D and m_ν cannot be removed and can even lead to leptogenesis for the type II dominated solution.

$$\epsilon_N = \frac{3}{16\pi} \frac{m_\nu m_N}{v^2} \sin(4\kappa), \quad \eta_B = 1.7 \times 10^{-6} \text{ eV} \frac{m_\nu m_N^2}{|m_D|^2 v^2} \sin(4\kappa).$$

Thus, it is possible to saturate the Antusch/King bound and to reproduce the observed baryon asymmetry e.g. with the values ($\kappa = \pi/8$)

$$|y| = 10^{-4}, \quad m_0 = 0.1 \text{ eV}, \quad \frac{v_R}{v_L} = 1.7 \times 10^{20}.$$
The same mechanism is operative in the two-flavor case in the limit

$$\frac{4 m_{D,1}^2}{m_0^2} \ll \frac{v_R}{v_L} \ll \frac{4 m_{D,2}^2}{m_0^2},$$

for the two solutions of type '±' as long as the second eigenvalue of the Yukawa coupling $y_2 > 5 \times 10^{-4}$.
The numerical evaluation for the three-flavor case gives for the solution ‘− − +’ (\(m_0 = 0.1 \) eV, \(y = y_u \)). Leptogenesis is generally viable for the four solutions of type ‘± ± +’.
Stability measure

Akhmedov, Blennow, Häggren, T.K., Ohlsson, ’06

To quantify tuning we use the following stability measure

\[
Q = \left| \frac{\det m_N}{\det m_\nu} \right|^{1/3} \sqrt{\sum_{k,l=1}^{12} \left(\frac{\partial m_l}{\partial M_k} \right)^2}.
\]

where \(m_l \) and \(M_k \) determine the light and heavy neutrino mass matrices according to

\[
m_N = \sum_k (M_k + iM_{k+N}) T_k, \quad m_\nu = \sum_k (m_k + i m_{k+N}) T_k,
\]

and \(T_k, k \in [1, 6] \), form a normalized basis of the complex symmetric \(3 \times 3 \) matrices.
The qualitative analysis mostly depends on the fact the $y = y_{up}$ has a large hierarchy.
The qualitative analysis mostly depends on the fact the $y = y_{up}$ has a large hierarchy.

\[v_{R}/v_{L} \]

\[Q \]

'± ± −': Unstable, no leptogenesis
Summary

The qualitative analysis mostly depends on the fact the $y = y_{up}$ has a large hierarchy.

'± − +', $v_R/v_L \gg 10^{23}$: Unstable
The qualitative analysis mostly depends on the fact the $y = y_{up}$ has a large hierarchy.

\[Q \propto \frac{v_R}{v_L} \]

$\pm ++$, $v_R/v_L \gg 10^{23}$: Gravitino bound violated
The qualitative analysis mostly depends on the fact that $y = y_{up}$ has a large hierarchy.

'$\pm \pm +$, $10^{16} \ll v_R/v_L \ll 10^{23}$: Sweet spot
In case of hierarchical Yukawa coupling for the neutrinos, the left-right symmetric type I+II framework constitutes a model that compared to the pure type I framework has the following properties:

GUT embedding

A large hierarchy in the neutrino Yukawa coupling is naturally implemented. The required tuning is reduced from $Q \sim 10^5$ to $Q \sim 10^2$.

SUSY embedding - Gravitino bound

The lower bound on the lightest right-handed neutrino mass is slightly relaxed from $m_{N_1} > 5 \times 10^8$ GeV to $m_{N_1} > 1 \times 10^8$ and the Antusch/King bound can be easily saturated using the additional Majorana phases.