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We study quasi-sta
tic perturbations in a cosmologic

al background in the Dvali-G
abadadze-Porrati

(DGP) braneworld model. We identify the Vainshtein radius at which the non-linear interact
ions

of the brane bending mode become importan
t in a cosmologic

al background. The Vainshtein ra-

dius in the early
universe

is much smaller
than the one in the Minkowski background, but in a

self-ac
celera

ting universe
it is the same as the Minkowski background. Our result shows that the

perturbative
approach

is applicable beyond the Vainshtein radius for weak gravity by taking into ac-

count the secon
d order effects of the brane bending mode. The linearise

d cosmologic
al perturbations

are shown to be smoothly matched to the solutions inside the Vainshtein radius. We emphasize
the

importan
ce of imposing a regularity

condition
in the bulk by solving the 5D perturbations and we

highlight the problem of ad hoc assumptions on the bulk gravity that lead to different conclusions.

I. INTRODUCTION

The accele
ration

of the late-ti
me universe

is one of the most important problems in cosmology.
Within the framework

of general relativ
ity, the accele

ration
is supposed to be caused by unknown dark energy.

The simplest option for

dark energy is vacuum energy,
but it is hard to explain why the vacuum energy is so small compared with the

prediction
of particle

physics. An altern
ative

to dark energy is provided by models where large-
distance modification

s

of gravity explain the accele
ration

. Probably the most widely studied example of a modified gravity model is the

Dvali-G
abadadze-Porrati

(DGP) brane-world model in which gravity leaks off the 4D brane into the 5D bulk spacetim
e

[1]. The 5D action
describ

ing the DGP model is given
by

S =
1

2κ2

∫

d5x
√−g(

5)R +
1

2κ
2
4

∫

d4x
√−γR +

∫

d4x
√−γLm +

1

κ2

∫

d4x
√−γK,

(1.1)

where Lm
is the Lagran

gian for matter
on the brane, Kµν is the extrinsic curvature and K = K

µ
µ.

The transition

from 4D gravity to 5D gravity is govern
ed by a crosso

ver scale
rc,

rc =
κ2

2κ
2
4

,

(1.2)

which is the only parameter in this model. A striking feature of this model is the existence of a solution where

the accele
ration

of universe
is caused entirely

by gravity without introducing the cosmologic
al constant [2]. In this

solution the Hubble parameter approach
es a constant, H → 1/rc, at late times, mimicking the cosmologic

al constant.

This self-ac
celera

ting solution has attrac
ted significant interest

recently [3].

Unfortunately,
it has been shown that the self-ac

celera
ting universe

contains a ghost [4, 5, 6, 7, 8, 9]. The existence

of the ghost was shown rigoro
usly on a de Sitter spacetim

e by studying linearise
d gravity. Recently, however,

there

are some claims that the non-linear interact
ions obscure the conclusion on the existence of the ghost [10, 11]. It

has been recogn
ized that the non-liner interact

ions of gravity in this model are much more subtle than 4D general

relativ
ity [4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The reason

is that the graviton contains a scalar
degree

of freedom

and the non-linear interact
ion of this mode becomes important on much larger

scales
than the usual graviton. This

is analogou
s to the massive

gravity model, where a helicity
-0 mode becomes strongly coupled on very large

scales

for small graviton mass [21].
In the DGP model, the scalar

mode is a mix of the helicity
-0 mode of the spin-2 5D

graviton and the spin-0 mode called
the radion [6, 7]. Physically

, the scalar
mode describ

es the bending of the brane

in the bulk [4, 5, 18]. It was shown that the non-linear interact
ion of the brane bending mode becomes important at

the so-cal
led Vainshtein radius r∗ = (rgr

2
c)

1/3 where rg is the Schwarzsch
ild radius of the source [12].

If we want to

explain the late-ti
me accele

ration
, we should require rc ∼ H

−1
0

.

One argument against the validity of the linearise
d analysis is that, for cosmology,

rg is roughly the Hubble scale

today rg ∼ H
−1
0

, then the Vainshtein radius is also the horizon
scale r∗ ∼ H

−1
0

, which may indicate that the linearise
d

cosmologic
al perturbations are not valid

[10].
However,

most of the literat
ure so far studied perturbations around

Minkowski spacetim
e. It is still unclear

what is the Vainshtein radius in a cosm
ologic

al backg
round. This is an

important question
to be addressed

because the ghost exists in the self-ac
celera

ting solution where the Minkowski
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The Dvali-Gabadadze-Porrati Model
4D Gravity on a Brane in 5D Minkowski Space, hep-th/0005016

self-accelerating branch :
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The Ghost in The Brane

Arguments against the validity of the linearized analysis have been raised
but only for perturbations around Minkowski space-time.

Motivation

The self-accelerating solution contains a ghost.

Space-time instability

Shown rigorously by studying linearized gravity.
Non-linear interactions might obscure this conclusion.

Thus it is important to study non-linear interactions in a cosmological background.

We did not solve the full non-linear problem. 
We properly solved the linearised perturbations in 5D spacetime (weak-gravity) 
and we took into account the second order effects of the brane bending mode.
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Quasi-Static Perturbations

brane-bending mode

The Line Element
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Quasi-Static Perturbations
Junction Conditions

(t,t) component :

spatial components :
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Quasi-Static Perturbations
Solutions in the Bulk

Einstein Equations

Regularity Condition
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Quasi-Static Perturbations
Equations on the Brane

Structure Formation
These Equations form the basis for the study 
of structure formation tests in this model.
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Solutions On The Brane

Linearised solutions

Brans-Dicke with

The Ghost
    BD scalar has the wrong sign if   
ω < -3/2
    this means β < 0
    which happens for H.rc > 1/2 
(on the self accelerating branch)

which is the condition for the 
existence of the ghost
e.g. Koyama (2005)
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Solutions On The Brane

The effects of non-linear interactions

TOO DIFFICULT

spherical symmetry
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Solutions On The Brane

 

    Early universe:

 (we can trust the linearized solution 
down to small scales)

   Self accelerating universe:              

Same Results
Lue & Starkman (2004)

Different Results
Gabadadze & Iglesias (2005) ?
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In Conclusion
Solutions On The Brane

rrcr*

5D
Gravity

4D
Weak-brane

4D
Einstein

weak!brane phase

braneworld
Einstein phase

FIG. 12. Given a mass source located on the brane, inside the radius r∗ (the green hemisphere),

the brane is dimpled significantly generating a nonperturbative extrinsic curvature. Brane fluc-
tuations are suppressed in this region (Einstein phase). Outside this radius, the brane is free to
fluctuate. The bulk in this picture is above the brane. The mirror copy of the bulk space below

the brane is suppressed.

3. The r/r0 → 0 Limit

The key to identifying a solution when r " r∗ is to recognize that one only needs to keep

certain nonlinear terms in Eqs. (4.20). So long as n, a, b " 1, or equivalently r # rg, the

only nonlinear terms that need to be included are those terms bilinear in Az

A and Bz

B [48].

Consider a point mass source such that Rg(r) = rg = constant. Then, the following set of

potentials on the brane are [48]

n = −
rg

2r
+

√

rgr

2r2
0

(4.36)

a = +
rg

2r
−

√

rgr

8r2
0

. (4.37)

The full bulk solution and how one arrives at that solution will be spelled out in Sec. V

when we consider the more general case of the Schwarzschild-like solution in the background

of a general cosmology, a subset of which is this Minkowski background solution.

That the inclusion of terms only nonlinear in az and bz was sufficient to find solutions

valid when r " r∗ is indicative that the nonlinear behavior arises from purely spatial

geometric factors [48]. In particular, inserting the potentials Eqs. (4.36) and (4.37) into

the expressions Eqs. (4.27) indicates that the extrinsic curvatures of the brane, i.e., az|z=0

and bz|z=0, play a crucial role in the nonlinear nature of this solution, indeed a solution

inherently nonperturbative in the source strength rg. This again is directly analogous to the

cosmic string but rather than exhibiting a conical distortion, the brane is now cuspy. The

picture of what happens physically to the brane is depicted in Fig. 12. When a mass source

is introduced in the brane, its gravitational effect includes a nonperturbative dimpling of the

brane surface (in direct analogy with the popular physics picture of how general relativity

works). The brane is dimpled significantly in a region within a radius r∗ of the matter source.

32

Linearized Solution
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In Conclusion

 

      We studied quasi-static perturbations in a cosmological background in the DGP braneworld. 
Solving the bulk metric perturbations and imposing a regularity condition, we got a closed set of 
equations on the brane.
      At linearised level the theory is decribed by the BD theory with 
    The non-linear interactions of the brane bending mode come into play at the Vainshtein 
radius, given by
      On scales smaller than the Vainshtein radius the solution approaches 4D GR.
      
      Our solutions agree with previous results both on a Minkowski and a Friedmann background.

      We checked the consistency of our equations using effective equations on the brane.

 

On the Ghost problem:
     Since we showed that the linearised analysis makes sense (for 
scales greater than the Vainshtein radius) we still find the ghost on 
the self-accelerated universe.
    Usually one expects an instant instability of the spacetime in the 
presence of the ghost. However, in this case, it is not so obvious that 
the ghost leads to that classically or quantum mechanically. 
Furthermore, non-linear interactions of the brane bending mode 
would become important if such instabilities arise.

 

Work in Progress:
- numerically solve the full non-
linear problem
- numerically find solutions for 
very large scales (with S. Seahra 
and A. Cardoso)
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Appendix

Neglected Terms:

sub-Horizon perturbations (                      )

quasi-static approximation

negligible because

negligible because higher order terms are much smaller 
than the linear terms, being suppressed by Planck’s Mass:
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Appendix
Gabadadze and Iglesias, hep-th/0407049

rrcr*

5D4D
assymptotically 
approaches 5D

4D
Einstein

BUT
ad hoc metric:

and they didn’t solve the bulk

 
Work in Progress

Check if this solution violates the 
regularity condition in the bulk

Linearized Solution

Dissimilar Results


