Tests of gravitation in the laboratory

Clive Speake
Giles Hammond, Tony Matthews,
Emanuele Rocco, Fabian Pena-Arellano.
University of Birmingham.

Talk Outline

- Motivation.
- Tests of the inverse square law (ISL) at short ranges.
- Tests for violation of Lorentz invariance.
- Summary.

Motivation

- The search for evidence for a coherent theory of quantum gravity.
- We would hope that the new theory would solve the hierarchy and the cosmological constant problem!
 - Such a theory may violate Lorentz and CPT symmetries.

Hierarchy Problem

 The problem lies in the difference between the energy scales that describe gravitation and the standard model:

$$V_3 = -\left(\frac{G}{\hbar c}\right) \cdot m_1 m_2 \frac{\hbar c}{r}$$

$$V_3 = -\left(\frac{G}{\hbar c}\right) \cdot m_1 m_2 \frac{\hbar c}{r} \qquad V_3 = -\frac{1}{M_p^2} \cdot m_1 m_2 \frac{\hbar c}{r}$$

- With $M_p \sim 10^{16} \text{ TeV/c}^2$
- Electro-weak unification scale is around 0.1TeV.
- LED hypthesis within String Theory proposes a new energy scale M_{*}.

The LED hypothesis

Imagine a 2-d space with 1 extra compactified dimension of radius R:

- For r<<R, space is essentially 3-d. Get 1/r² force law.
- For r>>R 'image' masses form a 'vertical' line charge.
 Get 1/r force and space is essentially 2-d.

Imagine these to be circles!

Relationship between M_{*} and R

LHC will reach 5 TeV

The Cosmological Constant Problem

• The length scale that characterises the Cosmological Constant problem can be easily calculated from the observed value of Dark Energy density, ρ_{obs} :

$$\rho_{obs} = \frac{\hbar c}{a^4}$$

- This generates deviations from the ISL at ranges $\lambda = a/2\pi = 14 \mu m$.
- The SLED hypothesis.

Motivation

• The signature for the breakdown of ISL can be parametrised as:

$$r \ge R_i$$

$$V = -\frac{G_3 m}{r} \left(1 + \alpha e^{-r/\lambda} \right)$$

- Many other theoretical predictions to be tested:
 - Chameleons
 - Moduli, dilatons, axions...

Current constraints to violations of the ISL

Searches for a violation of the ISL

Adelberger and colleagues, the Eot-wash collaboration.

Mass separation 56 μ m with 10 μ m shield.

Kapitulnik and colleagues

Au/Si Drive Mass

Mass separation 25 μ m with 3 μ m shield.

Searches for a violation of the ISL

University of Maryland

Cryogenic expt, source mass motion of +/-50µm

Cold Atom methods eg Ferrari et al PRL 2006

Bloch Oscillations $v = mg\Lambda/2h$

Spherical Superconducting Torsion Balance (Mk1 SSTB)

Float

Levitation bearing

Rotation detector

Key Features

- Meissner Effect Suspension
 - Spherical Symmetry
 - Programmable Stiffness

 $(\tau = 200s - 20s)$

- SQUID Angular Readout
 - $7x10^{-14} \text{ Nm}/\sqrt{\text{Hz}}$
- **Optimised for Short Ranges**
 - Based on Lead

The SSTB and Search for forces coupling mass to intrinsic spin

Moody and Wilczek (1984) proposed new interactions coupling mass and spin

$$V(r) = g_p g_s \frac{\hbar^2}{8\pi m_{spin}} \vec{\sigma} \cdot \hat{r} \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}$$

which can violate P and T on a macroscopic scale

• Axions are well motivated and possible dark matter candidates (20 μm < λ < 20 cm or 1 μeV <E<10 meV) and violate the ISL.

Search for new forces coupling mass to intrinsic spin.

= $(-5.4\pm(3.8)_{stat}\pm(4.2)_{sys})x10^{-15}Nm$ = $(-5.4\pm5.7) x10^{-15}Nm$

Measurement Polarity

 $g_pg_s = (-1.9\pm(1.3)_{stat}\pm(1.5)_{sys})x10^{-26}Nm$ =(-1.9 ±2.0) x10⁻²⁶ for λ >10mm

Most conservative limit assumes g_pg_s is -3.9 x10⁻²⁶ for λ >10mm

Cosmo 07, August 21st 2007

Physical Review Letters, 98, 081101, 2007

ISL test at Birmingham: concept design

High-density Au
Low-density Cu/Al

Motion

Test masses

Test masses manufactured at RAL

Mk2 float design

ISL test: experimental setup

Capacitive readout

Magnetic actuation

Spark eroded
Nb foil
feedback

coils

1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 1

1 2 3 4 4 5 5 6

Tests of the inverse square law at short ranges.

Tests of the inverse square law at short ranges.

Error Budget

<u>Systematics</u>	notes	Torque compared with nominal target of 6x10 ⁻¹⁹ Nm
Casimir/ plasma wavelength	Au/Cu	1.7×10^{-22}
Casimir/corrugation*	Corrugation amp=100 nm,	2.3×10^{-19}
	surface separation 8 μm/ 1μm	
	Au layer on each surface, force calculated to 10%	
Electrostatic/corrugation	Voltage difference 0.3 mV	1.6x10 ⁻¹⁹
Contact potential	Contact potential 2 µV	$3.3x10^{-19}$
diamagnetism	Au/Cu with background 4 μT	$4x10^{-20}$
Newtonian force*	Calculated to 10%	$7x10^{-19}$
<u>RMS</u>		8.2x10 ⁻¹⁹ Nm
Statistical uncertainty		Torque noise compared with
		nominal level of
		$\frac{2 \times 10^{-15} \text{Nm/Hz}^{1/2}}{15}$
Float metrology	Fractional ellipticity=10 ⁻³	1×10^{-15}
	Horizontal vibration spectrum	
The state of the s	$10^{-5} \text{ms}^{-2}/\text{Hz}^{1/2}$. 50g float.	1.3.10-20
Trapped flux	100 Gauss trapped field, Nb thin	1.3×10^{-20}
26	films.	1.5. 10-17
Moment of inertia asymmetry	1% asymmetry	1.5x10 ⁻¹⁷
Read-out noise	Interferometer with 1/f noise	1×10^{-15}
	reduction of factor 120.	~ 10:16
Thermal noise	Q=10 ⁴	5×10^{-16}
RMS torque with 6 months		$\frac{1.5 \times 10^{-15} \text{Nm/Hz}^{1/2}}{1.5 \times 10^{-19} \text{Nm/Hz}^{1/2}}$
integration time		$=2.7 \times 10^{-19} \text{Nm}$
TOTAL uncertainty		8.6x10 ⁻¹⁹ Nm

STFC proposal.

Test for violation of Lorentz symmetry

- String Theory must violate Lorentz invariance as strings have a finite size!
- Kostelecky and colleagues have proposed that violations of Lorentz invariance (and CPT) can be interpreted as relics of an underlying quantum gravity theory (which is valid at the Planck scale).

Experimental concept

Cosmological field, **b**_e

N_s intrinsic electron spins

Induced torque: $\vec{\Gamma} = N_s \hat{\sigma} \times \vec{b}_e$

Heckel et al (2006) used a rotating, torsion balance to set the limit $b_e < 2 \times 10^{-21} \, eV$

Predicted levels for violation arise from combinations of ratios of M_{EW} , M_p , m (particle masses). Naturally small.

The G-machine currently at BIPM

Torsion strip balance:

- 96% of restoring torque is gravitational
- Q ~3 x 10⁵ with Be Cu strip.
- Period 125s
- better signal to thermal noise than round fibre.

Polarising homodyne with novel optics to measure angular displacement

4nm/Hz $^{1/2}$ at 30μ Hz

EUCLID
Developed for drag-free control and for the SSTB.

Spin-modulation scheme

Test for violation of Lorentz symmetry

 Perform search for cosmic spin-field with unprecedented precision. We can improve on Heckel et al. by a factor of 2.5 after 3 years.

Projected
sensitivity
assuming (t)-1/2
scaling

Summary

- We have set new limits on new interactions coupling mass to intrinsic spin with a new instrument (SSTB).
- Laboratory experiments can search for evidence for proposed theories that unify gravitation and quantum field theories.
- At Birmingham we are developing experimental methods that could shed light on the hierarchy and cosmological constant problems and also could detect residual violations of Lorentz invariance due to an underlying theory of quantum gravity.

Thanks

to:

- Current and alumni of GP group
- Royal Society and Institute of Physics Paul Fund.
- Leverhulme Foundation.
- BAE Systems.
- EPSRC.
- PPARC (STFC).
- The organisers and.. you for your attention.

The LED hypothesis

r << *R*

$$V = -\frac{G_{3+n}m_1m_2}{r^{1+n}}$$

$$V = -\frac{G_{3+n}m_1m_2}{r^{1+n}} = -\frac{G_{3+n}}{\hbar c \Lambda^n} \cdot m_1m_2 \cdot \frac{\hbar c}{r} \left(\frac{\Lambda}{r}\right)^n$$

$$\Lambda = \frac{\hbar}{M_* c}$$

$$\Lambda = \frac{\hbar}{M_* c} \qquad G_{3+n} = \frac{\hbar c}{M_*^2} \Lambda^n$$

$$V = -\left(\frac{\hbar c}{M_p^2}\right) \frac{m_1 m_2}{r} \approx -\frac{\hbar c}{M_*^2} \frac{\Lambda^n}{(2\pi R)^n} \frac{m_1 m_2}{r}$$

Motivation

- Arkani-Hamed, Dimopoulos and Dvali boldly suggested that the gauge-hierarchy problem could be solved if up to 3 compactified dimensions were macroscopic! The LED hypothesis lowers the energy scale for gravity, M*, to the Electro-weak scale.
- The dimensions are curled-up into toroids or spheres of radii R.
- Newton's inverse square law (ISL) would turn into 1/r²⁺ⁿ for n LED's for mass spacings r<<R.

