Dynamics of super-inflation in Loop Quantum Cosmology

> **Nelson Nunes** DAMTP, University of Cambridge

- Superinflation in LQC
- Scaling solution
- Scalar power spectrum
- Number of *e*-folds

Copeland, Mulryne, Nunes, Shaeri (2007) Mulryne, Nunes (2006)

1. Loop Quantum Gravity

Theory of Gravity based on Ashtekar's variables which brings GR into the form of a gauge theory.

- Densitized triad E_i^a and $E_i^a E_i^b = q^{ab}q$
- SU(2) connection $A_a^i = \Gamma_a^i \gamma K_a^i$

 Γ_a^i - spin connection; K_a^i - extrinsic curvature; γ - Barbero-Immirzi parameter.

Quantization proceeds by using as basic variables holonomies,

$$h_e = \exp \int_e \tau_i A_a^i \dot{e}^a dt$$

in edges e, and fluxes,

$$F = \int_{S} \tau^{i} E_{i}^{a} n_{a} d^{2} y$$

in spacial surfaces S.

2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom.

Evolution of the Universe can be divided into 3 distinct phases:

• Quantum phase: $a < a_i$ and $a_i^2 = \gamma \ell_{pl}^2$.

Described by a difference equation;

• Semi-classical phase: $a_i < a < a_*$.

Continuous evolution but equations modified due to non-perturbative quantization effects;

• Classical phase: $a > a_*$.

Usual continuous cosmological equations.

3. Inverse volume operator

Classically: $d(a) = a^{-3}$

LQC:
$$d_{l,j}(a) = D_l(q)a^{-3}$$
 where $q = \left(\frac{a}{a_*}\right)^2$

4. Modified semi-classical equations

1. Modified Friedmann equation is obtained from the Hamiltonian constraint $\mathcal{H} = 0$,

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{a^2} = \frac{S}{3} \left(\frac{1}{2}\frac{\dot{\phi}^2}{D} + V(\phi)\right)$$

2. Modified Klein-Gordon equation is obtained from the Hamilton's equations

$$\ddot{\phi} + 3\frac{\dot{a}}{a} \left(1 - \frac{1}{3}\frac{d\ln D}{d\ln a}\right)\dot{\phi} + D\frac{dV}{d\phi} = 0$$

Antifrictional term when $d \ln D/d \ln a > 3$ in expanding Universe and frictional term in a contracting Universe.

3. Variation of the Hubble rate

$$\dot{H} = -\frac{S\dot{\phi}^2}{2D} \left(1 - \frac{1}{6}\frac{d\ln D}{d\ln a} + \frac{1}{6}\frac{d\ln S}{d\ln a}\right) + \frac{S}{2}\frac{d\ln S}{d\ln a}V + \frac{1}{a^2}$$

Super-inflation for $n - r = d \ln D / d \ln a - d \ln S / d \ln a > 6$.

5. Consequences for inflation (flat Universe)

- 1. Superinflation is brief
- 2. $\phi_t < 2.4 \ell_{\rm pl}^{-1}$ if Hubble bound is satisfied \Rightarrow not enough inflation

But can super-inflation replace standard inflation?

6. Scaling solution (Inverse volume corrections)

Scaling solution $\Leftrightarrow \quad \dot{\phi}^2/(2DV) \approx \text{cnst.}$ Lidsey (2004) $V = V_0 \phi^2$ 8 $a = (-\tau)^p$ 7 $p = \frac{2\alpha}{2\bar{\epsilon} - (2+r)\alpha}$ 6 $-\dot{\phi}^{2}/(2DV)$ $\bar{\epsilon} = \frac{1}{2} \frac{D}{S} \left(\frac{V_{,\phi}}{V} \right)^2$ 3 $V = V_0 \phi^\beta$ 2 1<u></u> 0.5 1.5 $\ln a/a_{init}$

 $\beta = 4\overline{\epsilon}/(n-r)\alpha > 0$, $\alpha = 1 - n/6$, $D \propto a^n$, $S \propto a^r$. Scaling solution is *stable* attractor for $\overline{\epsilon} > 3\alpha^2$ or $\beta > (n-6)/n \sim \mathcal{O}(1)$.

7. Power spectrum of the perturbed field

1. Write equation of motion for the perturbed field $u = aD^{-1/2}\delta\phi$:

$$u'' + (-D\nabla^2 + m_{\text{eff}}^2)u = 0$$

2. Promote u to an operator \hat{u} and expand in plane waves $\hat{u} = (2\pi)^{-2/3} \int d^3k [\omega_k \hat{a}_k + \omega_k^* \hat{a}_{-k}^{\dagger}] e^{-ik.x}$. Modes have equation of motion:

$$\omega_k'' + (Dk^2 + m_{\text{eff}}^2)\omega_k = 0$$

- 3. Normalize modes s.t. $[\hat{a}_k, \hat{a}_l] = [\hat{a}_k^{\dagger}, \hat{a}_l^{\dagger}] = 0$ and $[\hat{a}_k, \hat{a}_l^{\dagger}] = \delta^{(3)}(k-l)$ (Wronskian condition).
- 4. Find asymptotic value for large modes ($k \ll aH/\sqrt{D}$), when $m_{\text{eff}}^2 \tau^2 = \text{cnst.}$. Power spectrum is given by:

$$\mathcal{P}_u \propto k^3 \langle |\omega_k|^2
angle \propto k^{3-2|\nu|} (- au)^{1-|
u|(np+2)}$$

where $\nu = -\sqrt{1-4m_{ ext{eff}}^2 au^2}/(2+np)$ and the spectral index is
 $\Delta n_u \equiv 3-2|
u|$

8. Fast-roll parameters and scale invariance

Near scale invariance $\Rightarrow \quad \Delta n_u = 3 - 2|\nu| \approx 0 \quad \Rightarrow \quad |\nu| = 3/2 \quad \Rightarrow$ $m_{\text{eff}}^2 \tau^2 = -2, np \approx 0 \quad \Rightarrow \quad p \approx 0 \quad \Rightarrow \quad \bar{\epsilon} \gg 1 \quad \Leftrightarrow$

Steep and negative potentials.

Expand Δn_u in terms of fast-roll parameters

$$\begin{split} \epsilon &\equiv 1/2\overline{\epsilon} = \frac{S}{D} \left(\frac{V}{V_{,\phi}}\right)^2 \\ \eta &\equiv 1 - \frac{V_{,\phi\phi}V}{V_{,\phi}^2} - \frac{1}{2}\frac{V}{V_{,\phi}} \left(\frac{D_{,\phi}}{D} - \frac{S_{,\phi}}{S}\right) \end{split}$$

and admitting that $\overline{\epsilon}$ is time dependent, the spectral index gives

$$\Delta n_u \approx 4\epsilon \left[1 - \frac{n}{12}\left(1 + \frac{n}{6} - r\right) - \frac{r}{2}\right] - 4\eta$$

Scale invariance is obtained for $\epsilon \approx 0$ and $\eta \approx 0$.

9. Quadratic corrections

Using holonomies as basic variables leads to a quadratic energy density contribution in the Friedmann equation

$$H^2 = \frac{1}{3}\rho \left(1 - \frac{\rho}{2\sigma}\right)$$

with $\rho < 2\sigma$. In this work we consider

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0$$

The variation of the Hubble rate is

$$\dot{H} = -\frac{\dot{\phi}^2}{2} \left(1 - \frac{\rho}{\sigma}\right)$$

Super-inflation for $\sigma < \rho < 2\sigma$.

10. Scaling solution (quadratic corrections)

"Scaling solution" $\Leftrightarrow \qquad \dot{\phi}^2/(2\sigma - V) \approx \text{cnst.}$

where $\lambda^2 = 2\bar{\epsilon}$.

Scaling solution is *stable* attractor for all λ or $\overline{\epsilon}$

11. Power spectrum of the perturbed field

Power spectrum is given by: $\mathcal{P}_u \propto k^3 \langle |\omega_k|^2 \rangle \propto k^{3-2|\nu|} (-\tau)^{1-2|\nu|}$

where $\nu = -\sqrt{1 - 4m_{\rm eff}^2 \tau^2}/2$ and the spectral index is $\Delta n_u \equiv 3 - 2|\nu|$ For scaling solution

$$m_{\rm eff}^2 \tau^2 = -2 + 3p(1+p)$$

Near scale invariance $\Rightarrow p \approx 0 \Rightarrow \overline{\epsilon} \gg 1 \Leftrightarrow$ Steep, positive potentials.

Expand Δn_u in terms of fast-roll parameters

$$\epsilon \equiv 1/2\overline{\epsilon} = \left(\frac{U}{U,\phi}\right)^2 \qquad \eta \equiv 1 - \frac{V_{,\phi\phi}V}{V_{,\phi}^2}$$

and admitting that ϵ is time dependent, the spectral index gives

$$\Delta n_u \approx -4(\epsilon - \eta)$$

Scale invariance is obtained for $\epsilon \approx 0$ and $\eta \approx 0$.

12. Number of *e*-folds and the horizon problem

Requirement that the scale entering the horizon today exited N *e*-folds before the end of inflation:

$$\ln\left(\frac{a_{\rm end}H_{\rm end}}{a_NH_N}\right) = 68 - \frac{1}{2}\ln\left(\frac{M_{\rm Pl}}{H_{\rm end}}\right) - \frac{1}{3}\ln\left(\frac{\rho_{\rm end}}{\rho_{\rm reh}}\right)^{1/4}$$

1. In standard inflation: $\ln\left(\frac{a_{\text{end}}H_{\text{end}}}{a_NH_N}\right) \approx \ln\left(\frac{a_{\text{end}}}{a_N}\right) \equiv N \approx 60$

2. In LQC with $a = (-\tau)^p$ and $p \ll 1$

$$\ln\left(\frac{a_{\rm end}H_{\rm end}}{a_NH_N}\right) = \ln\frac{\tau_N}{\tau_{\rm end}} = \ln\left(\frac{a_N}{a_{\rm end}}\right)^{1/p} = -\frac{1}{p}N$$

 $N \approx -60p$

Number of *e*-folds of super-inflation required to solve the horizon problem can be of only a few.

13. Summary and questions

- 1. Inverse volume corrections: Scale invariance for steep negative potentials, $V = V_0 \phi^{\beta}$;
- 2. Quadratic corrections: Scale invariance for steep positive potentials, $V = 2\sigma U_0 \exp(-\lambda \phi)$;
- 3. Scaling solution is stable in both cases;
- 4. Only a few *e*-folds necessary to solve the horizon problem
- 5. What is the power spectrum of the curvature perturbation? Work in progress.