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1. Loop Quantum Gravity

Theory of Gravity based on Ashtekar’s variables which brings GR into the
form of a gauge theory.

e Densitized triad £¢ and E2E? = ¢%bq
e SU(2) connection A® =T — ~yK?

['" - spin connection; K! - extrinsic curvature; ~ - Barbero-Immirzi
parameter.

Quantization proceeds by using as basic variables holonomies,
h. = exp/TiAZé“dt
(&4

In edges e, and fluxes,
F:/TiEfnade
S

In spacial surfaces S.



2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom.

Evolution of the Universe can be divided into 3 distinct phases:
e Quantum phase: a < a; and a3 = v£2,.

Described by a difference equation;

e Semi-classical phase: a; < a < a,.

Continuous evolution but equations modified due to non-perturbative
guantization effects;

e Classical phase: a > a,.

Usual continuous cosmological equations.



3. Inverse volume operator

Classically: d(a) = a™*

LQC: d; i(a) = Di(q)a™>  where

for a <« a, , D(q) ~ D,a"
6 <n <o

fora > a,, D(q) = 1




4. Modified semi-classical equations

1. Modified Friedmann equation is obtained from the Hamiltonian
constraint H = 0,

(&) +==5(35+V0)

2. Modified Klein-Gordon equation is obtained from the Hamilton’s
equations

L a dln DY\ dV

¢+35( _%dlna)¢+D%:O
Antifrictional term when dIn D/dlna > 3 in expanding Universe and
frictional term in a contracting Universe.

3. Variation of the Hubble rate

H —
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Super-inflation forn —r =dIlnD/dIna — dIn S/dIna > 6.



5. Consequences for inflation (flat Universe)

V =m? ¢?/2

ol a /a =0.3
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Tsujikawa and Singh (2003)

1. Superinflation is brief

2. ¢y < 2.46;11 If Hubble bound is satisfied =- not enough inflation

But can super-inflation replace standard inflation?



6. Scaling solution (Inverse volume corrections)

Scaling solution <  ¢?/(2DV) ~ cnst.

Lidsey (2004)
V = Voo?
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B=4€/(n—r)a >0, a=1-—n/6, D x a™, S oxa’.

Scaling solution is stable attractor for € > 3a” or 3 > (n — 6)/n ~ O(1).



. Power spectrum of the perturbed field

. Write equation of motion for the perturbed field u = aD~1/2§¢:
u”" 4+ (—=DV? +mZz)u =0

. Promote « to an operator « and expand in plane waves o =
(2m)~%/3 [ d3k|wpan 4+ wia! | Je~™*. Modes have equation of motion:

w4+ (Dk?* + m2g)wi = 0

. Normalize modes s.t. [ay, a1 = [al,a]] = 0 and [y, a/] = 6@ (k —1)

(Wronskian condition).

. Find asymptotic value for large modes (k < aH/v/D ), when m2;72? =
cnst.. Power spectrum is given by:

P, X k3<|wk|2> o k3—2|1/|(_7_)1—|1/|(np—|—2)

where v = —/1 — 4m2;72/(2 + np) and the spectral index is

An, =3 — 2|



8. Fast-roll parameters and scale invariance

Near scale invariance =  An, =3-2v|~0 = v|=3/2 =

m27> = —2,np ~ 0 =3 p~0 = €>1 =

Steep and negative potentials.
Expand An, in terms of fast-roll parameters

SV

p=1_ Yol LV (Do 5S¢
V2. 2V, \D S

and admitting that € is time dependent, the spectral index gives

.
AUN4[L~—@_—_-)—ﬁ—4
T = ¢ A Y T B

Scale invariance is obtained for e ~ 0 and n ~



9. Quadratic corrections

Using holonomies as basic variables leads to a quadratic energy density
contribution in the Friedmann equation

1
H =z (1-5;)

with p < 2¢. In this work we consider
¢+3HG+ V=0

The variation of the Hubble rate is

: 2
-4 (-2

Super-inflation for o < p < 20.



10. Scaling solution (quadratic corrections)

"Scaling solution” &  ¢?/(20 — V) = cnst.

a=(—1)P . U = Uy exp(~ 0.50)
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where \? = 2¢.

Scaling solution is stable attractor for all A or €



11. Power spectrum of the perturbed field

Power spectrum is given by: P, oc k3(Jwy|?) oc k372 (—7) 1721

where v = —/1 — 4m?2,72/2 and the spectral index is An,, = 3 — 2|v/|

For scaling solution
m2gT® = =2+ 3p(1 + p)

Near scale invariance = p~ 0 = e > 1 &
positive potentials.

Expand An, in terms of fast-roll parameters
2 VsV
= 1/% = (L) 1 _ VeV
¢ / € U n
and admitting that ¢ is time dependent, the spectral index gives

An, ~ —4(e — n)

Scale invariance is obtained for e ~ 0 and n = 0.

Steep,



12. Number of e-folds and the horizon problem

Requirement that the scale entering the horizon today exited N e-folds
before the end of inflation:

aendHend 1 MPI 1 Pend L/4
1 — 68 — —1 — 21
() o mam () =5 (5)

Preh

anHp

1. In standard inflation: In (M> ~ In (m)

2. INnLQCwitha = (—7)Pand p < 1

end Hen Ve
ln(a d d)zlnTNzln(aN) = ——N
@NHN Tend

Uend

N =~ —60p

Number of e-folds of super-inflation required to solve the horizon problem
can be of only a few.



13. Summary and questions

1. Inverse volume corrections: Scale invariance for steep negative
potentials, V = V,¢”;

2. Quadratic corrections: Scale invariance for steep positive potentials,
V =20 — Uyexp(—Ao);

3. Scaling solution is stable in both cases;
4. Only a few e-folds necessary to solve the horizon problem

5. What is the power spectrum of the curvature perturbation? Work in
progress.



