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1. Loop Quantum Gravity

Theory of Gravity based on Ashtekar’s variables which brings GR into the
form of a gauge theory.

• Densitized triad Ea
i and Ea

i Eb
i = qabq

• SU(2) connection Ai
a = Γi

a − γKi
a

Γi
a - spin connection; Ki

a - extrinsic curvature; γ - Barbero-Immirzi
parameter.

Quantization proceeds by using as basic variables holonomies,

he = exp

∫

e

τiA
i
aė

adt

in edges e, and fluxes,

F =

∫

S

τ iEa
i nad

2y

in spacial surfaces S.



2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom.

Evolution of the Universe can be divided into 3 distinct phases:

• Quantum phase: a < ai and a2
i = γℓ2pl.

Described by a difference equation;

• Semi-classical phase: ai < a < a∗.

Continuous evolution but equations modified due to non-perturbative
quantization effects;

• Classical phase: a > a∗.

Usual continuous cosmological equations.



3. Inverse volume operator

Classically: d(a) = a−3

LQC: dl,j(a) = Dl(q)a
−3 where q =

(

a
a∗

)2

for a ≪ a∗ , D(q) ≈ D⋆a
n ,

6 < n < ∞

for a ≫ a∗ , D(q) ≈ 1
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4. Modified semi-classical equations

1. Modified Friedmann equation is obtained from the Hamiltonian
constraint H = 0,

(

ȧ
a

)2
+ 1

a2 = S
3

(

1
2

φ̇2

D + V (φ)
)

2. Modified Klein-Gordon equation is obtained from the Hamilton’s
equations

φ̈ + 3ȧ
a

(

1 − 1
3

d ln D
d ln a

)

φ̇ + DdV
dφ = 0

Antifrictional term when d ln D/d ln a > 3 in expanding Universe and
frictional term in a contracting Universe.

3. Variation of the Hubble rate

Ḣ = −Sφ̇2

2D

(

1 − 1

6

d lnD

d ln a
+

1

6

d ln S

d ln a

)

+
S

2

d lnS

d ln a
V +

1

a2

Super-inflation for n − r = d lnD/d ln a − d lnS/d ln a > 6.



5. Consequences for inflation (flat Universe)
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1. Superinflation is brief

2. φt < 2.4ℓ−1
pl if Hubble bound is satisfied ⇒ not enough inflation

But can super-inflation replace standard inflation?



6. Scaling solution (Inverse volume corrections)

Scaling solution ⇔ φ̇2/(2DV ) ≈ cnst.
Lidsey (2004)

a = (−τ)p

p =
2α

2ǭ − (2 + r)α

ǭ =
1

2

D

S

(

V,φ

V

)2

V = V0 φβ
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β = 4ǭ/(n − r)α > 0, α = 1 − n/6, D ∝ an, S ∝ ar.

Scaling solution is stable attractor for ǭ > 3α2 or β > (n − 6)/n ∼ O(1).



7. Power spectrum of the perturbed field

1. Write equation of motion for the perturbed field u = aD−1/2δφ:

u′′ + (−D∇2 + m2
eff)u = 0

2. Promote u to an operator û and expand in plane waves û =
(2π)−2/3

∫

d3k[ωkâk + ω∗
kâ

†
−k]e

−ik.x. Modes have equation of motion:

ω′′
k + (Dk2 + m2

eff)ωk = 0

3. Normalize modes s.t. [âk, âl] = [â†
k, â

†
l ] = 0 and [âk, â

†
l ] = δ(3)(k − l)

(Wronskian condition).

4. Find asymptotic value for large modes (k ≪ aH/
√

D ), when m2
effτ2 =

cnst.. Power spectrum is given by:

Pu ∝ k3〈|ωk|2〉 ∝ k3−2|ν|(−τ)1−|ν|(np+2)

where ν = −
√

1 − 4m2
effτ2/(2 + np) and the spectral index is

∆nu ≡ 3 − 2|ν|



8. Fast-roll parameters and scale invariance

Near scale invariance ⇒ ∆nu = 3−2|ν| ≈ 0 ⇒ |ν| = 3/2 ⇒
m2

effτ2 = −2, np ≈ 0 ⇒ p ≈ 0 ⇒ ǭ ≫ 1 ⇔

Steep and negative potentials.

Expand ∆nu in terms of fast-roll parameters

ǫ ≡ 1/2ǭ =
S

D

(

V

V,φ

)2

η ≡ 1 − V,φφV

V 2
,φ

− 1

2

V

V,φ

(

D,φ

D
− S,φ

S

)

and admitting that ǭ is time dependent, the spectral index gives

∆nu ≈ 4ǫ
[

1 − n

12

(

1 +
n

6
− r

)

− r

2

]

− 4η

Scale invariance is obtained for ǫ ≈ 0 and η ≈ 0.



9. Quadratic corrections

Using holonomies as basic variables leads to a quadratic energy density
contribution in the Friedmann equation

H2 =
1

3
ρ

(

1 − ρ

2σ

)

with ρ < 2σ. In this work we consider

φ̈ + 3Hφ̇ + V,φ = 0

The variation of the Hubble rate is

Ḣ = −φ̇2

2

(

1 − ρ

σ

)

Super-inflation for σ < ρ < 2σ.



10. Scaling solution (quadratic corrections)

”Scaling solution” ⇔ φ̇2/(2σ − V ) ≈ cnst.

a = (−τ)p

p = − 1

ǭ + 1

ǭ =
1

2

(

U,φ

U

)2

V = 2σ − U(φ)

U = U0 e−λφ
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where λ2 = 2ǭ.

Scaling solution is stable attractor for all λ or ǭ



11. Power spectrum of the perturbed field

Power spectrum is given by: Pu ∝ k3〈|ωk|2〉 ∝ k3−2|ν|(−τ)1−2|ν|

where ν = −
√

1 − 4m2
effτ2/2 and the spectral index is ∆nu ≡ 3 − 2|ν|

For scaling solution

m2
effτ2 = −2 + 3p(1 + p)

Near scale invariance ⇒ p ≈ 0 ⇒ ǭ ≫ 1 ⇔ Steep,
positive potentials.

Expand ∆nu in terms of fast-roll parameters

ǫ ≡ 1/2ǭ =
(

U
U,φ

)2

η ≡ 1 − V,φφV

V 2
,φ

and admitting that ǫ is time dependent, the spectral index gives

∆nu ≈ −4(ǫ − η)

Scale invariance is obtained for ǫ ≈ 0 and η ≈ 0.



12. Number of e-folds and the horizon problem

Requirement that the scale entering the horizon today exited N e-folds
before the end of inflation:

ln

(

aendHend

aNHN

)

= 68 − 1

2
ln

(

MPl

Hend

)

− 1

3
ln

(

ρend

ρreh

)1/4

1. In standard inflation: ln
(

aendHend
aNHN

)

≈ ln
(

aend
aN

)

≡ N ≈ 60

2. In LQC with a = (−τ)p and p ≪ 1

ln

(

aendHend

aNHN

)

= ln
τN

τend
= ln

(

aN

aend

)1/p

= −1

p
N

N ≈ −60p

Number of e-folds of super-inflation required to solve the horizon problem
can be of only a few.



13. Summary and questions

1. Inverse volume corrections: Scale invariance for steep negative
potentials, V = V0φ

β;

2. Quadratic corrections: Scale invariance for steep positive potentials,
V = 2σ − U0 exp(−λφ);

3. Scaling solution is stable in both cases;

4. Only a few e-folds necessary to solve the horizon problem

5. What is the power spectrum of the curvature perturbation? Work in
progress.


