Cosmo 07

Catching, Ultra-High Energy COSNIC SOLVER HIGH Leeds for the Pierre Auger Collaboration

Contents:

UHE Cosmic Rays

annan

The Pierre Auger Observatory

UHECRs

Cosmic Ray Flux:

steeply falling: x 10 up in energy 1/500 down in flux

no upper end (so far)

real high-energy physics!

Schematic Shower Development

detector response:

energy deposits, times, efficiencies, thresholds, ... Shower development depends on:

- hadronic interactions,
- electromagnetic interactions,
- particle production,
- decays,
- transport, ...

Complex interplay of many effects:

- no analytic solution possible
- no test beam for calibration available

(at least for really high energies)

Need an air shower model:

- simulate showers for specific primaries
- get realistic detector responses
- find algorithms for reconstruction of primary shower parameters

Forward particles carry energy into the atmosphere & drive shower development

Possible Acceleration Sites to 10²⁰ eV

 $B_{\mu G} \times L_{kpc} > 2 E_{EeV} / Z$

 $B_{\mu G} \ge L_{kpc} \ge 2 (c/v) E_{EeV} / Z$

to fit gyroradius within L and to allow particle to wander during energy gain

But also:

gain should be more rapid than losses due to magnetic field (synchrotron radiation) and photo-reactions.

No obvious candidates

GZK Cut-Off

Greisen Zatsepin Kuzmin

Universe is opaque for E > 4·10¹⁹ eV

Are CRs protons? Does Lorentz invariance hold?

Cut-off or no cut-off ???

HiRes 2006

Highest energy particles must be extragalactic

needed: much more statistics, good energy resolution, control of systematics, mass composition

>300 PhD physicists / 70 institutions from

Argentina, Australia, Brazil, **Bolivia, Czech Republic, France,** Germany, Italy, Mexico, Netherlands, Poland, Portugal, Slovenia, Spain, United Kingdom, USA, Vietnam

Status: July 2007

1438 deployed1400 filled1364 taking data

all 24 FD complete

Communications antenna

GPS antenna

Electronics enclosure

Solar Panels

3 x 9" PMTs

Plastic tank 12 m³ water

Battery box

1600 water Cherenkov detectors over 3000 km²

SD tanks in the field

Event 1096757

High & smooth pulses close to shower core, low & spiky pulses far away.

FD telescope:

aperture with shutter, filter and Schmidt corrector lenses

II m² mirror (Aluminium)

440 PMT camera

24 telescopes at 4 sites 30°x30° FOV, each FD: longitudinal profile calorimetric energy X_{max} for mass comp.

SD &FD: hybrid, very good geometry cross-calibration

	hybrid	SD only	FD only
angular resolution	0.2°	I-2°	3-5 °
aperture	independent of E, mass, models	independent of E, mass, models	dependent of E, mass, models and spectral slope
energy	independent of mass, models	dependent of mass, models	independent of mass, models
	Δ	Ê 13.5	

highest energy events so far: near vertical inclined $E = 1.67 \times 10^{20} \text{ eV}$ $\theta = 14^{\circ}$ $E = 0.37 \times 10^{20} \text{ eV}$ $\theta = 74^{\circ}$

20 May 2007 $E \sim 10^{19} \text{ eV}$ Shower seen by array and all 4 FDs

Spectrum

SD near vertical
SD inclined
Hybrid

Energy: straight forward (?) from FD (but FD only active for 10% of time) model dependent from SD (SD active for 100% of time)

get energy calibration from FD for high statistics from SD

Aperture: directly from size of SD (above 3x10¹⁸ eV)

log (S1000) from SD

387 hybrid events

model independent; error on S(1000) decreases with energy

Source	Systematic uncertainty
Fluorescence yield	14%
P,T and humidity	7%
effects on yield	
Calibration	9.5%
Atmosphere	4%
Reconstruction	10%
Invisible energy	4%
TOTAL	22%

model dependent

Efforts to decrease these uncertainties

Aperture Calculation

lateral trigger probability

5165 km² sr yr \approx 0.85 full-Auger years zenith angle: 0-60° 7725 events > 10^{18.5} eV

Inclined shower spectrum

Auger Spectra:

Residuals (combined spectrum)

Is HiRes aperture known well enough ??? changes by 10x from 1 to 10 EeV, depends on mass composition, models, spectral slope

Does Auger see the GZK cut-off ?

GZK cut-off: if CRs are protons with source spectrum $>10^{20}$ eV sources are universally distributed depression by about a decade at $\approx 5 \times 10^{19}$ eV

Also nuclear primaries would be absorbed/destroyed, but not quite in the same way (propagation).

Alternatives:

maximum energy of accelerator ? effect of a local source ?

Is ankle the transition point between galactic and extragalactic CRs ?

... need more info on composition ...

Composition

- photons
- neutrinos
- nuclei

Hybrid events

SD events

most top-down models are ruled out

Auger Collaboration Astrop. Phys. 27 (2007) 155 to be submitted to Astrop. Phys.

Hadronic composition from X_{max}(E)

Residual

Horizontal showers

Due to water tanks (1.2 m high) the Auger SD has sensitivity for nearly-horizontal showers ($\Theta > 60^{\circ}$)

Special event reconstruction techniques (by Ave, Watson, Zas et al.) first applied to Haverah Park data

~ doubles aperture for CR events increases sky coverage sensitivity also to neutrinos

Neutrino detection with Auger

horizontal showers from hadrons: el.mag. component absorbed, muons only

horizontal showers from neutrinos: look like a) after > 3 atmospheres

Auger: no neutrino candidate

Anisotropy

- "spectroscopy" in cosmic magnetic fields

No large over-densities or dipoles

Auger: Galactic Centre see Astrop. Phys. 27 (2007) 244

no point source

Auger: 1155/1160

(22% excess would give +1415 evts. or +7.5 σ)

Auger: 144/151

(85% excess would give +279 evts. or +10.5 σ)

no correlation with galactic or super galactic plane

No dipoles or large-scale excesses

No significant emission from Galactic Centre as claimed by AGASA and Sugar

No small-scale clustering as claimed by AGASA

No signal from BL Lacs as claimed by HiRes

but:

Some hints for anisotropy at are seen:

2 prescriptions are set up to be tested with independent data sample (answer very soon)

...and

Auger will increase event number 5-10x in next few years

Summary:

Auger South is almost compete (>85%) and is taking high-quality data: Event sample (>10¹⁹ eV) already larger than that of AGASA and HiRes, with superior energy and angular resolution Auger statistics is growing fast

Spectrum: ankle at $\approx 4.5 \times 10^{18} \text{ eV}$ and steepening at $\approx 3.6 \times 10^{19} \text{ eV}$ with model-independent measurement and analysis

But what is the interpretation?

ankle: transition galactic to extra-galactic?

cut-off: GZK cut-off? a local effect? maximum energy of accelerators ???

Mass composition is crucial:

upper limits on photons and neutrinos mixed nuclear composition at highest energy ??? are hadronic models right ? higher cross section ? more muons ? (needs more work)

Arrival directions: no point sources (yet), several earlier claims falsified, but first hints at anisotropies (2 prescriptions running)

Auger-South complete in a few months. Reliable experimental data for many years to come (& solid basis for theoretical work)

After last tank is deployed: begin construction of

high elevation FD (to 60°), denser SD sub-array, muon detectors for hybrid work down to 10¹⁷ eV (designed and fully funded)

Auger North: 10000 km², Colorado, US submit proposal within a year