#### **DM in the Constrained MSSM** - A Bayesian approach

Leszek Roszkowski

#### CERN

#### and

Astro-Particle Theory and Cosmology Group, Sheffield, England

with Roberto Ruiz de Austri (Autonoma Madrid), Joe Silk and Roberto Trotta (Oxford) hep-ph/0602028  $\rightarrow$  JHEP06, hep-ph/0611173  $\rightarrow$  JHEP07, arXiv:0705.2012 and arXiv:0707.0622

#### SuperBayes package, superbayes.org

# Outline

- the Constrained MSSM (CMSSM)
- Iimitations of fixed-grid scans
- Bayesian Analysis of the CMSSM
- fits of observables
- mean quality of fit and the CMSSM
- direct detection of dark matter
- indirect detection of dark matter
- summary

...aka mSUGRA

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${\scriptstyle 
  ightarrow}$  scalars  $m^2_{\widetilde{q}_i}=m^2_{\widetilde{l}_i}=m^2_{H_b}=m^2_{H_t}=m^2_0$
- 9 3–linear soft terms  $A_b = A_t = A_0$



...aka mSUGRA

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${} {oldsymbol{\square}}$  scalars  $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 9 3-linear soft terms  $A_b = A_t = A_0$



radiative EWSB

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

...aka mSUGRA

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${oldsymbol{\square}}$  scalars  $m^2_{\widetilde{q}_i}=m^2_{\widetilde{l}_i}=m^2_{H_b}=m^2_{H_t}=m^2_0$
- 3-linear soft terms  $A_b = A_t = A_0$



radiative EWSB

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

• five independent parameters:  $\tan\beta, m_{1/2}, m_0, A_0, \operatorname{sgn}(\mu)$ 

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${oldsymbol{\square}}$  scalars  $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 3-linear soft terms  $A_b = A_t = A_0$



radiative EWSB

$$\mu^{2} = \frac{\left(m_{H_{b}}^{2} + \Sigma_{b}^{(1)}\right) - \left(m_{H_{t}}^{2} + \Sigma_{t}^{(1)}\right) \tan^{2}\beta}{\tan^{2}\beta - 1} - \frac{m_{Z}^{2}}{2}$$

- five independent parameters:  $\tan\beta, \ m_{1/2}, \ m_0, \ A_0, \ \mathrm{sgn}(\mu)$
- mass spectra at  $m_Z$ : run RGEs, 2–loop for g.c. and Y.c, 1-loop for masses
- some important quantities  $(\mu, m_A, \ldots)$  very sensitive to procedure of computing EWSB & minimizing  $V_H$

we use SoftSusy and FeynHiggs

"usual" fixed-grid scans

"usual" fixed-grid scans







- fixed-grid scans, assuming rigid  $1\sigma$  or  $2\sigma$  experimental ranges
- **g**reen: consistent with WMAP-3yr (at  $2\sigma$ )
- all the rest excluded by LEP,  $\operatorname{BR}(\bar{B} \to X_s \gamma), \Omega_\chi h^2$ , EWSB, charged LSP,...

#### Bayesian pdf maps





fixed-grid scans





fixed-grid scans

Note: In both an outdated SM value of  $BR(\bar{B} \rightarrow X_s \gamma)$  used. See below.

Apply to the CMSSM:

 $m = (\theta, \psi)$ : model's all relevant parameters

- $m = (\theta, \psi)$ : model's all relevant parameters
- $\theta$ : CMSSM parameters:  $m_{1/2}$ ,  $m_0$ ,  $A_0$ ,  $\tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters

- $m = (\theta, \psi)$ : model's all relevant parameters
- $\theta$ : CMSSM parameters:  $m_{1/2}$ ,  $m_0$ ,  $A_0$ ,  $\tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables):  $\xi(m)$

- $m = (\theta, \psi)$ : model's all relevant parameters
- $\theta$ : CMSSM parameters:  $m_{1/2}$ ,  $m_0$ ,  $A_0$ ,  $\tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables):  $\xi(m)$
- d: data



- $m = (\theta, \psi)$ : model's all relevant parameters
- $\theta$ : CMSSM parameters:  $m_{1/2}$ ,  $m_0$ ,  $A_0$ ,  $\tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables):  $\xi(m)$
- d: data
- Bayes' theorem: posterior pdf

$$p( heta,\psi|d) = rac{p(d|m{\xi})\pi( heta,\psi)}{p(d)}$$



- $p(d|\xi)$ : likelihood
- $\pi(\theta,\psi)$ : prior pdf

- $posterior = \frac{likelihood \times prior}{normalization facto}$
- **p(d):** evidence (normalization factor)

- $m = (\theta, \psi)$ : model's all relevant parameters
- $\theta$ : CMSSM parameters:  $m_{1/2}$ ,  $m_0$ ,  $A_0$ ,  $\tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables):  $\xi(m)$
- *d*: data
- Bayes' theorem: posterior pdf

$$p( heta,\psi|d) = rac{p(d|m{\xi})\pi( heta,\psi)}{p(d)}$$



- $p(d|\xi)$ : likelihood
- $\pi(\theta,\psi)$ : prior pdf

- $posterior = \frac{likelihood \times prior}{normalization factor}$
- **p(d):** evidence (normalization factor)
- usually marginalize over SM (nuisance) parameters  $\psi \Rightarrow p(\theta|d)$

- $\psi = (M_t, m_b(m_b)^{\overline{MS}}, \alpha_{em}(M_Z)^{\overline{MS}}, \alpha_s^{\overline{MS}})$ : SM (nuisance) parameters
- priors assume flat distributions and ranges as:



- vary all 8 (CMSSM+SM) parameters simultaneously, scan with MCMC
  - include all relevant theoretical and experimental errors

## **Experimental Measurements**

(assume Gaussian distributions)

# **Experimental Measurements**

(assume Gaussian distributions)

| SM (nuisance) parameter               | Mean Error |                            |
|---------------------------------------|------------|----------------------------|
|                                       | $\mu$      | $oldsymbol{\sigma}$ (expt) |
| $M_t$                                 | 171.4 GeV  | 2.1 GeV                    |
| $(m_b(m_b)^{\overline{MS}})$          | 4.20 GeV   | 0.07 GeV                   |
| $lpha_s^{\overline{MS}}$              | 0.1176     | 0.002                      |
| $1/lpha_{ m em}(M_Z)^{\overline{MS}}$ | 127.918    | 0.018                      |

# **Experimental Measurements**

(assume Gaussian distributions)

| SM (nuisance) parameter               | Mean      | Error                      | new $M_W=80.413\pm0.048{ m GeV}$                                       |
|---------------------------------------|-----------|----------------------------|------------------------------------------------------------------------|
|                                       | $\mu$     | $oldsymbol{\sigma}$ (expt) | (Jan 07, not yet included)                                             |
| M+                                    | 171 4 GeV | 2.1 GeV                    | new $M_t = 170.9 \pm 1.8$ GeV                                          |
|                                       |           | 2.1 0.0 1                  | (Mar 07, not yet included)                                             |
| $m_b(m_b)^{_{M}S}$                    | 4.20 GeV  | 0.07 GeV                   | ${ m BR}(ar{ m B}  ightarrow { m X_s} oldsymbol{\gamma}) 	imes 10^4$ : |
| $lpha_s^{\overline{MS}}$              | 0.1176    | 0.002                      | new SM: $3.15 \pm 0.23$ (Misiak &                                      |
| $1/lpha_{ m em}(M_Z)^{\overline{MS}}$ | 127.918   | 0.018                      | Steinhauser, Sept 06) used here                                        |

| Derived observable                                        | Mean       | Errors                     |                       |
|-----------------------------------------------------------|------------|----------------------------|-----------------------|
|                                                           | μ          | $oldsymbol{\sigma}$ (expt) | $oldsymbol{	au}$ (th) |
| $M_W$                                                     | 80.392 GeV | 29 MeV                     | 15 MeV                |
| $\sin^2	heta_{ m eff}$                                    | 0.23153    | $16	imes 10^{-5}$          | $15	imes 10^{-5}$     |
| $\delta a_{\mu}^{ m SUSY} 	imes 10^{10}$                  | 28         | 8.1                        | 1                     |
| ${ m BR}(ar{ m B}  ightarrow { m X_s} \gamma) 	imes 10^4$ | 3.55       | 0.26                       | 0.21                  |
| $\Delta M_{B_s}$                                          | 17.33      | 0.12                       | 4.8                   |
| $\Omega_\chi h^2$                                         | 0.119      | 0.009                      | $0.1\Omega_\chi h^2$  |

take as precisely known:  $M_Z=91.1876(21)~{
m GeV}, G_F=1.16637(1) imes10^{-5}~{
m GeV}^{-2}$ 

# **Experimental Limits**

| Derived observable                             | upper/lower | Constraints                         |                           |
|------------------------------------------------|-------------|-------------------------------------|---------------------------|
|                                                | limit       | <b>ξ</b> lim                        | $oldsymbol{	au}$ (theor.) |
| $BR(B_s \to \mu^+ \mu^-)$                      | UL          | $1.5	imes10^{-7}$                   | 14%                       |
| $m_h$                                          | LL          | 114.4 GeV (91.0 GeV)                | 3 GeV                     |
| $\zeta_h^2 \equiv g_{ZZh}^2/g_{ZZH_{ m SM}}^2$ | UL          | $f(m_h)$                            | 3%                        |
| $m_{\chi}$                                     | LL          | 50 GeV                              | 5%                        |
| $m_{\chi_1^{\pm}}$                             | LL          | $103.5  { m GeV}  (92.4  { m GeV})$ | 5%                        |
| $m_{\tilde{e}_R}$                              | LL          | 100 GeV (73 GeV)                    | 5%                        |
| $m_{{	ilde \mu}_R}$                            | LL          | 95 GeV (73 GeV)                     | 5%                        |
| $m_{	ilde{	au}_1}$                             | LL          | 87 GeV (73 GeV)                     | 5%                        |
| $m_{\widetilde{ u}}$                           | LL          | 94 GeV (43 GeV)                     | 5%                        |
| $m_{	ilde{t}_1}$                               | LL          | 95 GeV (65 GeV)                     | 5%                        |
| $m_{	ilde{b}_1}$                               | LL          | 95 GeV (59 GeV)                     | 5%                        |
| $m_{\widetilde{q}}$                            | LL          | 318 GeV                             | 5%                        |
| $m_{\widetilde{g}}$                            | LL          | 233 GeV                             | 5%                        |
| $(\sigma_p^{SI})$                              | UL          | WIMP mass dependent                 | $\sim 100\%$ )            |

Note: DM direct detection  $\sigma_p^{SI}$  not applied due to astroph'l uncertainties (eg, local DM density)

Take a single observable  $\xi(m)$  that has been measured

Take a single observable  $\xi(m)$  that has been measured

c – central value,  $\sigma$  – standard exptal error

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = \tfrac{[\xi(m) - c]^2}{\sigma^2}$$

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

■ assuming Gaussian distribution  $(d \rightarrow (c, \sigma))$ :

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = \frac{[\xi(m) - c]^2}{\sigma^2}$$

assuming Gaussian distribution  $(d \rightarrow (c, \sigma))$ :

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

 $\checkmark$  when include theoretical error estimate  $\tau$  (assumed Gaussian):

$$\sigma \to s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution  $(d \rightarrow (c, \sigma))$ :

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

when include theoretical error estimate  $\tau$  (assumed Gaussian):

$$\sigma 
ightarrow s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_i rac{\chi_i^2}{2}
ight]$$

## **Probability maps of the CMSSM**

# **Probability maps of the CMSSM**

#### arXiv:0705.2012





- MCMC scanBayesian analysis
  - relative probability density fn
- flat priors
- 68% total prob. inner contours
- 95% total prob. outer contours
- 2-dim pdf  $p(m_0, m_{1/2}|d)$
- favored:  $m_0 \gg m_{1/2}$  (FP region)

# **Probability maps of the CMSSM**

#### arXiv:0705.2012

0.4

0.6

0.8





similar study by Allanach+Lester(+Weber) (but no mean qof), see also, Ellis et al (EHOW,  $\chi^2$  approach, no MCMC, they fix SM parameters!)
### **Probability maps of the CMSSM**

#### arXiv:0705.2012







unlike others (except for A+L), we vary also SM parameters

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

indirect detection (ID):

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

• antimatter  $(e^+, \bar{p}, \bar{D})$  from WIMP pair-annihilation in the MW halo

from within a few kpc

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few

from within a few kpc

 gamma rays from WIMP pair-annihilation in the Galactic center
 depending on DM distribution in the GC

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few

from within a few kpc

 gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative

# Dark matter detection: $\sigma_p^{SI}$

# Dark matter detection: $\sigma_p^{SI}$

#### MCMC+Bayesian analysis



# Dark matter detection: $\sigma_p^{SI}$

#### MCMC+Bayesian analysis



#### compare: fixed grid scan



## **Prospects for direct detection:** $\sigma_p^{SI}$



Bayesian analysis, flat priors (MCMC)

Vo

Massive Particle  $\rightarrow \circ$ 

Cause target recoil - detect i

internal (external): 68% (95%) region

### **Prospects for direct detection:** $\sigma_n^{SI}$



internal (external): 68% (95%) region

Bayesian analysis, flat priors (MCMC) XENON-10 (June 07): new limit  $\sigma_p^{SI} \leq 10^{-7}$  pb: also CDMS-II (?)  $\Rightarrow$  explore the FP region (large  $m_0 \gg m_{1/2}$ ), outside of the LHC reach ultimately: "1 tonne" detectors:

Particle

$$\sigma_p^{SI} \lesssim 10^{-10}\,{
m pb}$$

will cover all 68% region

target

lause target recoil - detect i

## **Prospects for direct detection:** $\sigma_n^{SI}$



 $\begin{array}{l} \text{Bayesian analysis, flat priors} \\ & (\text{MCMC}) \\ \text{XENON-10 (June 07):} \\ & \text{new limit } \sigma_p^{SI} \lesssim 10^{-7} \, \text{pb:} \\ & \text{also CDMS-II (?)} \\ \Rightarrow \text{ explore the FP region} \\ & (\text{large } m_0 \gg m_{1/2}), \text{ outside of the LHC} \\ & \text{reach} \\ & \text{ultimately: "1 tonne" detectors:} \\ & \sigma_p^{SI} \leqslant 10^{-10} \, \text{pb} \end{array}$ 

Particle

will cover all 68% region

target

ause target recoil - detect i

internal (external): 68% (95%) region

most probable range:  $10^{-7}$  pb  $\lesssim \sigma_p^{SI} \lesssim 10^{-10}$  pb partly outside of the LHC reach ( $m_\chi \lesssim 400$  GeV)

...not a settled matter

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, \beta, \gamma$  - adjustable parameters

 $ho_c = 
ho_0 \left(rac{r_0}{a}
ight)^{\gamma} \left[1 + \left(rac{R_0}{a}
ight)^{lpha}
ight]^{(eta - \gamma)/lpha}$ ,  $ho_0 \sim 0.3 \, {
m GeV/\, cm^3}$  - DM density at  $r_0$ 

a - scale radius - from num. sim's or to match observations

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, \beta, \gamma$  - adjustable parameters

 $ho_c = 
ho_0 \left(rac{r_0}{a}
ight)^{\gamma} \left[1 + \left(rac{R_0}{a}
ight)^{lpha}
ight]^{(eta - \gamma)/lpha}$ ,  $ho_0 \sim 0.3 \, {
m GeV/\,cm^3}$  - DM density at  $r_0$ 

*a* - scale radius - from num. sim's or to match observations

• adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: "model"  $\Rightarrow$  "model-c"

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, \beta, \gamma$  - adjustable parameters

$$\rho_c = \rho_0 \left(\frac{r_0}{a}\right)^{\gamma} \left[1 + \left(\frac{R_0}{a}\right)^{\alpha}\right]^{(\beta-\gamma)/\alpha}$$
,  $\rho_0 \sim 0.3 \,\text{GeV}/\,\text{cm}^3$  - DM density at  $r_0$ 

a - scale radius - from num. sim's or to match observations

• adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: "model"  $\Rightarrow$  "model-c"

| halo model       | $oldsymbol{a}$ ( kpc) | $m{r_0}$ ( kpc) | $(oldsymbollpha,oldsymboleta,oldsymbol\gamma)$ | small $r$ : $\propto r^{-\gamma}$ | large $r$ : $\propto$ |
|------------------|-----------------------|-----------------|------------------------------------------------|-----------------------------------|-----------------------|
| isothermal cored | 3.5                   | 8.5             | (2, 2, 0)                                      | flat                              | $r^{-2}$              |
| NFW              | 20.0                  | 8.0             | (1, 3, 1)                                      | $r^{-1}$                          | $r^{-3}$              |
| NFW-c            | 20.0                  | 8.0             | $\left(1.5,3,1.5 ight)$                        | $r^{-1.5}$                        | $r^{-3}$              |
| Moore            | 28.0                  | 8.0             | (1, 3, 1.5)                                    | $r^{-1.5}$                        | $r^{-3}$              |
| Moore-c          | 28.0                  | 8.0             | (0.8, 2.7, 1.65)                               | $r^{-1.65}$                       | $r^{-2.7}$            |

some most popular models:

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, oldsymbol{eta}, \gamma$  - adjustable parameters

$$\rho_c = \rho_0 \left(\frac{r_0}{a}\right)^{\gamma} \left[1 + \left(\frac{R_0}{a}\right)^{\alpha}\right]^{(\beta-\gamma)/\alpha}$$
,  $\rho_0 \sim 0.3 \,\text{GeV}/\,\text{cm}^3$  - DM density at  $r_0$ 

*a* - scale radius - from num. sim's or to match observations

• adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: "model"  $\Rightarrow$  "model-c"

| halo model       | $oldsymbol{a}$ ( kpc) | $m{r_0}$ ( kpc) | $(oldsymbollpha,oldsymboleta,oldsymbol\gamma)$ | small $r$ : $\propto r^{-\gamma}$ | large $r$ : $\propto$ |
|------------------|-----------------------|-----------------|------------------------------------------------|-----------------------------------|-----------------------|
| isothermal cored | 3.5                   | 8.5             | (2, 2, 0)                                      | flat                              | $r^{-2}$              |
| NFW              | 20.0                  | 8.0             | (1, 3, 1)                                      | $r^{-1}$                          | $r^{-3}$              |
| NFW-c            | 20.0                  | 8.0             | $\left(1.5,3,1.5 ight)$                        | $r^{-1.5}$                        | $r^{-3}$              |
| Moore            | 28.0                  | 8.0             | (1, 3, 1.5)                                    | $r^{-1.5}$                        | $r^{-3}$              |
| Moore-c          | 28.0                  | 8.0             | (0.8, 2.7, 1.65)                               | $r^{-1.65}$                       | $r^{-2.7}$            |

some most popular models:

Many open questions: clumps??, central cusp??, spherical or tri-axial??,...

- In the GC:  $ho_{DM}$  is likely to be larger
- WIMP pair annihilation  $\chi\chi o SMparticles \propto 
  ho_{\chi}^2$  will be enhanced
- WIMP annihilation final decay products:  $WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation}$ (and/or  $\gamma\gamma, \gamma Z$ )

- In the GC:  $\rho_{DM}$  is likely to be larger
- WIMP pair annihilation  $\chi\chi \to \mathrm{SMparticles} \propto \rho_{\chi}^2$  will be enhanced
- WIMP annihilation final decay products:  $WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation}$ (and/or  $\gamma\gamma, \gamma Z$ )
- diffuse  $\gamma$  radiation:

I.o.s - line of sight

$$rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\psi) = \sum_i rac{\sigma_i v}{8\pi m_\chi^2} \, rac{dN_\gamma^i}{dE_\gamma} \int_{
m l.o.s.} dl 
ho_\chi^2(r(l,\psi))$$

- In the GC:  $\rho_{DM}$  is likely to be larger
- WIMP pair annihilation  $\chi\chi \to \mathrm{SMparticles} \propto \rho_{\chi}^2$  will be enhanced
- WIMP annihilation final decay products:  $WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation}$ (and/or  $\gamma\gamma, \gamma Z$ )
- diffuse  $\gamma$  radiation:

I.o.s - line of sight

$$rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\psi) = \sum_i rac{\sigma_i v}{8\pi m_\chi^2} \, rac{dN_\gamma^i}{dE_\gamma} \int_{
m l.o.s.} dl 
ho_\chi^2(r(l,\psi))$$

separate particle physics and astrophysics inputs; define:

$$J(\psi) = rac{1}{8.5\,\mathrm{kpc}} \left(rac{1}{0.3\,\mathrm{GeV/cm^3}}
ight)^2 \int_{\mathrm{l.o.s.}} dl\, 
ho_\chi^2(r(l,\psi))$$

and

$$ar{J}(\Delta \Omega) = (1/\Delta \Omega) \int_{\Delta \Omega} J(\psi) d\Omega$$

 $\Delta \Omega$  - finite angular resolution of a GR detector

**9** diff'l flux from the cone  $\Delta \Omega$ 

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} {
m sec}^{-1} {
m sr}^{-1}$ 

**9** diff'l flux from the cone  $\Delta \Omega$ 

total flux

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} {
m sec}^{-1} {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

L. Roszkowski, COSMO-07, 22/08/2007 - p.1

**9** diff'l flux from the cone  $\Delta \Omega$ 

total flux

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} \ {
m sec}^{-1} \, {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

**•** main bgnd:  $\pi^0$ 's from primary CR int's with interstellar H and He atoms  $(\pi^0 \rightarrow \gamma \gamma)$ 

**9** diff'l flux from the cone  $\Delta \Omega$ 

total flux

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} {
m sec}^{-1} {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

**9** main bgnd:  $\pi^0$ 's from primary CR int's with interstellar H and He atoms  $(\pi^0 \rightarrow \gamma \gamma)$ 

much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity

 ${}^{igstyle}$  diff'l flux from the cone  $\Delta \Omega$ 

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} \ {
m sec}^{-1} \, {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

**P** main bgnd:  $\pi^0$ 's from primary CR int's with interstellar H and He atoms  $(\pi^0 \rightarrow \gamma \gamma)$ 

much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity

all-sky survey

total flux

- effective energy range 20 MeV to 300 GeV, very good energy resolution
- ${}$  angular resolution  $\Delta\Omega\simeq 10^{-5}{
  m sr}$  (or  $\sim 0.15\,{
  m deg}$  for  $E_\gamma>10\,{
  m GeV}$  )



use GLAST parameters

Bayesian posterior probability maps

#### use GLAST parameters

Bayesian posterior probability maps

#### total flux vs. $m_{\chi}$



#### use GLAST parameters

#### total flux vs. $m_{\chi}$



#### Bayesian posterior probability maps

#### $\gamma$ -ray energy spectrum: example



 $159\,\mathrm{GeV} < m_\chi < 493\,\mathrm{GeV}$  (68% range)

#### use GLAST parameters

#### total flux vs. $m_{\chi}$

#### 10<sup>-3</sup> Roszkowski, Ruiz, Silk & Trotta (2007) Roszkowski, Ruiz, Silk & Trotta (2007) $\Phi_{\gamma}$ from GC $\cdot d\Phi/dE$ ) from GC Moore adiab. comp. EGRET 10 $(E^2.d\Phi/dE)_{\gamma}$ (GeV cm<sup>-2</sup> s<sup>-1</sup>) CMSSM, $\mu > 0$ 10<sup>-5</sup> CMSSM, $\mu > 0$ -6 NFW adiab. comp. NFW adiab. comp. Moore 10<sup>-6</sup> $\log[\Phi_{\gamma} (cm^{-2}s^{-1})]$ $10^{-7}$ -8 10<sup>-8</sup> GLAST reach (1yr) 10<sup>-9</sup> -10 10 $10^{-1}$ -12 159 GeV < m < 493 GeV (68% range) $\Delta \Omega = 10^{-5} \mathrm{sr}$ 10<sup>-12</sup> iso. cored 10<sup>2</sup> $10^{0}$ 10 10 $E_{thr} > 1 \text{ GeV}$ E<sub>v</sub> (GeV) -14 0.2 0.4 0.8 0.6 $m_{\gamma}^{}$ (GeV) $m_{\gamma}$ (TeV) 250 200 300 350 400 450 Relative probability density $159\,\mathrm{GeV} < m_\chi < 493\,\mathrm{GeV}$ (68% range)

GLAST prospects critically depend on how cuspy is the GC

if more cuspy than NFW: all 95% CMSSM range will be explored (at 95% CL)

even if signal detected: much uncertainty in determining  $oldsymbol{m}_{oldsymbol{\chi}}$ 

#### Bayesian posterior probability maps

#### $\gamma$ -ray energy spectrum: example

 $E_{e^+}$  from from DM annihilations

propagate in interstellar magnetic field

 $K(\epsilon) = 2.1 imes 10^{28} \epsilon^{0.6} {
m cm}^2 \, {
m sec}^{-1}$ 

 $\epsilon = E_{e^+}/1\,{\rm GeV}$ 

much less halo model dependence
 loose energy via inverse Compton scattering
 b(\epsilon) = \frac{\epsilon^2}{\tau\_E} \approx 10^{-16} \epsilon^2 \sec^{-1}
 \tau\_E = 10^{16} \sec^{-1}

• diffusion zone: infinite slab of height L = 4 kpc, free escape BC's

*E*<sub>e</sub>+ from from DM annihilations
 propagate in interstellar magnetic field
 *K*( $\epsilon$ ) = 2.1 × 10<sup>28</sup>  $\epsilon^{0.6}$  cm<sup>2</sup> sec<sup>-1</sup>

$$\epsilon = E_{e^+}/1\,{\rm GeV}$$



$$au_E = 10^{16}\, ext{sec}^{-1}$$

infinite slab of height L = 4 kpc, free escape BC's

#### NFW + adiab. compression



#### (scales linearly with boost factor)

*E*<sub>e</sub>+ from from DM annihilations
 propagate in interstellar magnetic field
 *K*( $\epsilon$ ) = 2.1 × 10<sup>28</sup>  $\epsilon^{0.6}$  cm<sup>2</sup> sec<sup>-1</sup>

$$\epsilon = E_{e^+}/1\,{\rm GeV}$$



$$au_E = 10^{16}\, ext{sec}^{-1}$$

= 4 kpc, free escape

#### NFW + adiab. compression



 $159\,\mathrm{GeV} < m_\chi < 493\,\mathrm{GeV}$  (68% range)
## **Positron flux and PAMELA**

*E*<sub>e</sub>+ from from DM annihilations
 propagate in interstellar magnetic field
 *K*( $\epsilon$ ) = 2.1 × 10<sup>28</sup>  $\epsilon^{0.6}$  cm<sup>2</sup> sec<sup>-1</sup>

$$\epsilon = E_{e^+}/1\,{\rm GeV}$$



$$au_E = 10^{16}\, ext{sec}^{-1}$$



diffusion zone: infinite slab of heid

infinite slab of height L = 4 kpc, free escape BC's

#### NFW + adiab. compression



### ⇒ prospects for PAMELA rather poor

(...unless large boost factor)





MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY



- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...
- CMSSM: direct detection of neutralino DM

 $2.8 imes 10^{-10}\,{
m pb} < \sigma_p^{SI} < 3.9 imes 10^{-8}\,{
m pb}$  (68%)

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...
- CMSSM: direct detection of neutralino DM

 $2.8 imes 10^{-10}\,{
m pb} < \sigma_p^{SI} < 3.9 imes 10^{-8}\,{
m pb}$  (68%)

 $\mu > 0$ 

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...
- CMSSM: direct detection of neutralino DM

 $2.8 imes 10^{-10} \, {
m pb} < \sigma_p^{SI} < 3.9 imes 10^{-8} \, {
m pb} ~~(68\%)$ 

 $\mu > 0$ 

can be probed at 95% CL with planned 1 tonne detectors

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...
- CMSSM: direct detection of neutralino DM

 $2.8 imes 10^{-10} \, {
m pb} < \sigma_p^{SI} < 3.9 imes 10^{-8} \, {
m pb} ~~(68\%)$ 

 $\mu > 0$ 

- can be probed at 95% CL with planned 1 tonne detectors
- with  $\sim 4 \, \text{fb}^{-1}$ /expt:  $3\sigma$  evidence over 95% CL  $m_h$  range

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...
- CMSSM: direct detection of neutralino DM

 $2.8 imes 10^{-10} \, {
m pb} < \sigma_p^{SI} < 3.9 imes 10^{-8} \, {
m pb} ~(68\%)$ 

 $\mu > 0$ 

- can be probed at 95% CL with planned 1 tonne detectors
- with  $\sim 4 \, \text{fb}^{-1}$ /expt:  $3\sigma$  evidence over 95% CL  $m_h$  range
- DM direct detection: expt now probing favored 68% CL region

some already probed with XENON-10 etc.

 $\gamma$ -rays from the GC: DM signal guaranteed at GLAST if halo cuspy enough (NFW profile - borderline case)

- MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. "new physics" models like SUSY
- new tool: SuperBayes package, superbayes.org
- easily adaptable to other models, frameworks,...
- CMSSM: direct detection of neutralino DM

 $2.8 imes 10^{-10} \, {
m pb} < \sigma_p^{SI} < 3.9 imes 10^{-8} \, {
m pb} ~(68\%)$ 

 $\mu > 0$ 

- can be probed at 95% CL with planned 1 tonne detectors
- with  $\sim 4 \, \text{fb}^{-1}$ /expt:  $3\sigma$  evidence over 95% CL  $m_h$  range
- DM direct detection: expt now probing favored 68% CL region

some already probed with XENON-10 etc.

- $\gamma$ -rays from the GC: DM signal guaranteed at GLAST if halo cuspy enough (NFW profile - borderline case)
- positrons from DM: signal unlikely at PAMELA (unless large boost factor)
  L. Roszkowski, COSMO-07, 22/08/2007 p.2



### **Fits of Observables**



■ good fits:  $M_t$ ,  $\alpha_s$ ,  $\Omega_{\chi} h^2$ ,  $\mathrm{BR}(\bar{B} \to X_s \gamma)$  (for  $\mu < 0$ !)

- In not so good:  $M_W$ ,  $\sin^2 heta_{
  m eff}$ ,  ${
  m BR}(ar{B} o X_s \gamma)$  (for  $\mu > 0$ !)
- **b** bad:  $\Delta a_{\mu}^{SUSY}$  (for both signs of  $\mu$ !)

### **The Likelihood**

### incorporates information about the observational data

- the mapping  $\xi(m)$  comes with uncertainties
- $\checkmark$  experimental uncertainty  $\sigma_i$
- $\checkmark$  theoretical uncertainty  $au_i$
- introduce "exact" mapping  $\hat{\xi}(\theta, \chi)$
- the likelihood:

$$p(d|m{\xi}) = \int p(d|\hat{m{\xi}}) p(\hat{m{\xi}}|m{\xi}) d^m \hat{m{\xi}}$$

where

$$p(\hat{\xi}|\xi) = rac{1}{(2\pi)^{m/2}|C|^{1/2}} \exp\left(-rac{1}{2}(\xi - \hat{\xi})C^{-1}(\xi - \hat{\xi})^T
ight)$$

 $m{C}:m{m} imesm{m}$  covariance matrix if uncorrelated:  $m{C}= ext{diag}\left( au_1^2,\ldots, au_m^2
ight)$ 

$$p(d|\hat{\xi}) = rac{1}{(2\pi)^{m/2}|D|^{1/2}} \exp\left(-rac{1}{2}(d-\hat{\xi})D^{-1}(d-\hat{\xi})^T
ight)$$

if uncorrelated:  $D = ext{diag}\left(\sigma_1^2, \dots, \sigma_m^2
ight)$ 

Itotal error for each observable: 
$$s_i = \sqrt{\sigma_i^2 + \tau_i^2}$$

# **Probability maps of the CMSSM**

 $\mu > 0$ :



# **Probability maps of the CMSSM**

0

CMSSM

μ>0

60

50

 $\mu > 0$ :



CMSSM µ>0

CMSSM µ>0

6

60

A<sub>0</sub> (TeV)

m<sub>1/2</sub> (TeV)

tanβ

3.5

2.5

0.5

3.5

3

2.5

2 1.5

0.5

-4

-2

0 2 4

A<sub>0</sub> (TeV)

m<sub>0</sub> (TeV)

10 20 30 40 50

ki Ruiz & Trotta (200)

m<sub>0</sub> (TeV)



20 30 40

 $\sim$ 

tanβ

10

10 20





0

Roszkowski Buiz & Trotte (2007



m<sub>1/2</sub> (TeV)







### **Posterior pdf vs. mean qof:** $\mu < 0$

# **Posterior pdf vs. mean qof:** $\mu < 0$

#### posterior pdf



# **Posterior pdf vs. mean qof:** $\mu < 0$

#### posterior pdf

mean qof



 $\mu < 0$  generally poorer fit to the data