Neutrino Telescopes

Jürgen Brunner CPPMarseille

Why neutrino telescopes ? How do they work ?
Existing and Future projects -Selected results and prospects

Why Neutrinotelescopes ?

Observation of universe with

New messenger: Neutrino Photon Proton

New wave length range (Energy): E > TeV

So far only 2 objects on MeV neutrino sky:

Sun !

SN1987A (few seconds)

Super- K (Japan) image of the sun using neutrinos

Production and transmission of neutrinos

Neutrinos produced in p hadronic interactions of high energy protons or nucle

$$p/A + p/\gamma \rightarrow \tau^{\rho} + \tau^{\mu} + \cdots \text{ at source}$$

$$\downarrow \qquad \downarrow \qquad \qquad \lor_{e} : \lor_{\mu} : \lor_{\tau}$$

$$lei \qquad \qquad \Upsilon \qquad \bigvee_{\mu} \mu \qquad \qquad =$$

$$\downarrow \qquad \qquad 1 : 2 : 10^{-5}$$

In transit : oscillations between flavours

at Earth $\mathbf{v}_{e} : \mathbf{v}_{\mu} : \mathbf{v}_{\tau}$ =1 : 1 : 1

Potential neutrino sources

Search for galactic/extragalactic v sources: SN remnants, Galactic microquasars AGN, GRB, ...

Common property of all potential sources:

Shock waves Fermi acceleration Possible sources of cosmic rays

Indirect detection of WIMPs with a neutrino telescope:

 $\theta_c = 42^{\circ}$

Indirect detection of WIMPs using neutrino telescopes:

- Relic WIMPs from the Big Bang traversing the universe undergo multiple elastic interactions with inside a massive celestial object (Sun, Earth, center of our galaxy), lose kinetic energy and become gravitationally bound to the object.
- Over time, the WIMP density in the core of the object increases. This enhances the WIMP annihilation rate significantly, resulting in a neutrino flux with energies up to 400 GeV that will reach the Earth.
- These neutrinos can interact through a CC interaction in the vicinity of a neutrino telescope, producing an energetic muon. When traversing the transparent medium of the telescope, the muon will emit Cherenkov light. By measuring the time & position of the photons using a 3D grid of PMTs, the neutrino track can be reconstructed.

Neutrino flux on Earth

Existing and future projects

Amanda/Icecube

BAIKAL

Collaboration

Institute for Nuclear Research, Moscow, Russia
Irkutsk State University, Russia.
Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia.
DESY-Zeuthen, Zeuthen, Germany.
Joint Institute for Nuclear Research, Dubna, Russia.
Nizhny Novgorod State Technical University, Russia.
St.Petersburg State Marine University, Russia.
Kurchatov Institute, Moscow, Russia.

Atmospheric Muon-Neutrinos

- Data: <u>372 upward v events</u> (1998-2002).
- MC: 385 ev. expected (15%BG).

 \rightarrow A high statistics neutrino sample for

Point-Source Search, incl. GalCenter. No evidence for non-atmosph. V's.

($N_{\mu}(>15GeV)/N_{\mu}(>1GeV)\sim1/7$)

ICECUBE / AMANDA

and the second

AMANDA skyplot 2000-2003

Search for diffuse v with hard spectrum

New results from 4 years Amanda

Achterberg et al., astro-ph/0705.1315

Supernova Monitor

WIMP search --- new results

PRELIMINARY

Limits on muon flux from Earth

eV)

Limits on muon flux from Sun

ANTARES

- 1996-2002 Site exploration and R&D
- 2002-2008
 Construction of 12 lines
- 2008-2013... Operation for science

ANTARES Collaboration & detector site

The ANTARES detector

Basic detector element: storey

Status of ANTARES

Junction Box at present time

Operational since March 2006

Line deployment with CASTOR

Connections with IFREMER submersibles

Connection of first line

ROV VICTOR

Data from acoustic positioning system

Counting rate in photomultipliers

Angular Resolution

< 0.3° for >10 TeV :dominated by detector resolution

Accumulated data taking time

Effective number of days with all losses and inefficiencies included

Vertical muon

SH2

First confirmed neutrino

 ⊖=35°

Zenith angle distribution

ANTARES WIMPS search from the sun

Excludable $v_{\mu} + v_{\mu}$ detection rate in ANTARES per 3 years vs. m_x :

Comparison to direct detection experiments

Spin independent $\chi p \rightarrow \chi p$ cross section of (non-)excludable models in ANTARES per 3 years vs. m_x:

KM3NeT consortium

38 institutes from:

Cyprus, France, Germany, Greece, Ireland Italy, Malta, The Netherlands, Spain, UK

Foreseen KM3NeT profile

Neutrino skymap?

Radio Telescope (Bonn)

Optical Telescope (Palomar)

X - ray Satellite (INTEGRAL/ESA)

Neutrino Telescope

m	10 ⁻⁵	c m 1 0 ⁻⁴	m m 1 0 ⁻³	1 0 -2	10 ⁻¹	μm 1	10	1 0 ²	n m 1 0 ³	Å 10 ⁴	10 ⁵	<u>10⁶</u>	<u>10⁷</u>	10 ⁸	109	10 ¹⁰	<u>10¹¹</u>	1 0 ^{1 2}	1 0 ^{1 3}	1 0 ^{1 4}	10 ¹⁵	e V
Radio			Infi	rarouge		Ор	tiq u e			R	ayon	s X			Ray	yons (Gamm	ı a				

View of sky in Galactic Coordinates in four different photon wavelengths

RadioVisible lightX - raysNeutrinos

Expected v flux from galactic point sources, example: RXJ 1713-3946

Christian Stegmann et al.

Note importance of background of atmospheric v in a km³ detector

Neutrino Event Rates (II)

γ-ray sources with observed cut-off (KM3NeT, 5 years)

			E > 1TeV		E > 5TeV	
	Туре	Dia. [º]	src	bck 🖊	src	bck 🔪
- Vela X	PWN	0.8	9 – 23	23	5 – 15	4.6
- RX J1713.7-3946	SNR	1.3	7 – 14	21	2.6 – 6.7	8.2
- RX J0852.0-4622	SNR	2.0	7 – 15	104	1.9 – 6.5	21
- HESS J1825-137	PWN	0.3	5 – 10	9. <mark>3</mark>	2.2 – 5.2	1.8
- Crab Nebula	PWN	<0.1	4.0 – 7.6	5.2	1.1 – 2.7	1.1
- HESS J1303-631	NCP	0.3	0.8 – 2.3	11	0.1 – 0.5	2.1
- LS 5039* (INFC)	Binary	<0.1	0.3 – 0.7	2.5	0.1 - 0.3	0.5

NCP: no counterparts at other wavelength

* n_{γ} γ -ray absorption

- 23 further γ-ray sources investigated:
 - All γ-ray spectra show no cut-offs (but limited statistics)
 - Event numbers mostly below 1 2 in 5 years

Christian Stegmann, Galactic Neutrinos, ICRC 2007

>PeV v absorbed in the Earth

Search for neutrinos from 32 candidate sources

event selection optimized for both $dN/dE \sim E^{-2}$ and E^{-3} spectra

	source	nr. of v events (5 years)	expected background (5 years)	E ⁻² flux upper limit (90% c.l.) $\Phi_{\nu_{\mu}+\nu_{\tau}}$ [10 ⁻¹¹ TeV ⁻¹ cm ⁻² s ⁻¹]	No sigr
	Markarian 421	6	7.4	7.4	hific
	M87	6	6.1	8.7	ant
	1ES 1959+650	5	4.8	13.5	e X
	SS433	4	6.1	4.8	Ces
	Cygnus X-3	7	6.5	11.8	О О
	Cygnus X-1	8	7.0	13.2	bse
	Crab Nebula	10	6.7	17.8	PV
\rightarrow	3C 273	8	4.72	18.0	ă

Achterberg et al. 2007, astro-ph/ 0611063

1.20 equiv. (random maps)