Dark Matter Searches

Experimental Status and Projects

Direct Detection

H Kraus University of Oxford

$$E_{\rm R} = E_0 \cdot \frac{4 M_{\rm W} M_{\rm N}}{\left(M_{\rm W} + M_{\rm N}\right)} \cdot \frac{1}{2} \left(1 - \cos\theta^*\right) \approx 0.4 \, \text{keV} \cdot \frac{M_{\rm W}}{\text{GeV}}$$

Direct detection via WIMP scattering by nuclei: $E_R \sim \text{tens of keV}$

Experimental Challenges

- Background suppression
 - Deep underground sites
 - Radio-purity of components
 - Active/passive shielding
- Large target mass required
- ~ few keV energy threshold
- Stability and reproducibility

- Discriminate recoil populations
 - Photons scatter off electrons
 - WIMPs/neutrons off nuclei
 - radon heavy nuclear recoils, alpha tails...

Underground Laboratory

The EURECA infrastructure A unique opportunity for integration between experiment and laboratory –

Deepest site in Europe (4800 mwe)

Known and good site (low convergence, dry, stiff rock)Central location in Europe, easy access (plane, train, car)23 years experience in running such platform

Dark Matter Signatures

Discrimination

- 1. Recoil energy spectrum Energy resolution exponential, similar to background.
- 2. Nuclear (not electron) recoils is really required now.
- 3. Coherence: A dependence Multi-target essential once first signal is identified.
- 4. Absence of multiple interactions Large Array removes some fraction of background.
- 5. Diurnal modulation nice, but needs low-pressure gaseous target.
- 6. Annual modulation (requires many events) tricky; most events are close to threshold, small effect.

Experiments – MSSM Predictions

Detection Techniques

Outline of Talk

Liquefied Noble Gases XENON (US), ZEPLIN, WARP

Cryogenic Techniques EDELWEISS, CRESST, CDMS (US)

Status and Future

DAMA / LIBRA

- Data taking completed in July 2002
- Total exposure of 107,731 kg.d
- See annual modulation at 6.3σ
- Claims model-independent evidence for WIMPs in the galactic halo
- 2nd phase: LIBRA 250 kg

WIMP candidate, using standard halo parameters:

 $M_X = (52 {}^{+10}_{-8}) \text{ GeV and}$ $\sigma_{X-N} = (7.2 {}^{+0.4}_{-0.9}) .10^{-6} \text{ pb}$

DAMA / LIBRA running 250 kg; wait at least until 2008 ...

DRIFT II

Solid or liquid targets ($E_{nuc rec} < 100 \text{keV}$): tracks 1nm – 100nm. Gaseous target: a few mm. Low-pressure CS₂ gas time projection chamber to measure directionality of nuclear recoil.

DRIFT II

2D MPWC + timing gives 3d vertex reconstruction.

Electron capture in electro-negative gas limits diffusion during drift to 0.1% of drift distance.

Liquefied Noble Gas

Gamma

(S2/S1)_{wimp} << (S2/S1)_{gamma}

ZEPLIN II

30 kg xenon, λ_{scint} = 175 nm. 7 PMT (in gas phase).

Prompt scintillation from liquid; ns time scale.

Electroluminescence pulse from avalanche in gas; µs time scale.

Installed underground in Boulby.

Science run

Calibration run

← AmBe cal 80 70 60 50 toed \$2/51 \$2/81 All events \rightarrow enerov keV/ energy, keV. ← Co-60 cal 70 60 50 \$281 \$2/51 Veto'ed events removed \rightarrow 6.6 x 10⁻⁷pb energy, keV_ enerov, keV

ZEPLIN III Underground in Boulby; final assembly.

31 PMT immersed in liquid.

8 kg fid. volume

XENON (US / Gran Sasso)

- Two-phase Xe TPC
- Light/Ionization detector
- Very-low BG photomultipliers
- 10 kg prototype operating
- 100kg phase : 1 TPC

Real 3-D measurement if Csl photocathode is efficient enough

Aim: 1 ton scale (10 LXeTPC) **2.2 pe / keV**_{ee} 99.5% discrimination at 50% **Reach 10⁻¹⁰ pb within 3 years**

XENON Neutron / Gamma Calibration

J Angle et al., astro-ph:0706.0039

XENON Results

Most experiments (ZEPLIN, XENON, WArP) are already recording background and look at ways to remove it.

WARP – WIMP Argon Programme

3.5

з

S1/S1(<400 ns)

2

1.5

1

0.5

Cryogenic Techniques

Combination of phonon measurement with measurement of ionization or scintillation

Phonon: most precise total energy measurement

Ionization / Scintillation: yield depends on recoiling particle

Nuclear / electron recoil discrimination.

EDELWEISS – Detectors

Target: Cyl. Ge crystal, 320 g Ø 70 mm, h = 20 mm Phonon - signal: NTD-Ge (~ 20 mK) Ionisation - signal: Inner disc / outer guard ring

Phonon – Ionisation

Excellent resolution in ionisation and phonon signals. Clean γ -calibration data: no event below Q = 0.7.

CRESST – Detectors

thermal link

thermometer (W-film)

absorber crystal

Particle interaction in absorber creates a temperature rise in thermometer which is proportional to energy deposition in absorber

Temperature pulse (~6keV)

Width of transition: ~1mK Signals: few μ K Stablity: ~ µ K

Phonon – Scintillation

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

CDMS II (US)

Z-sensitive lonization and Phonon-mediated©

Measure ionization in low-field (~volts/cm) with segmented contacts to allow rejection of events near outer edge

250 g Ge or 100 g Si crystal 10 mm thick x 75 mm diameter

Collect athermal phonons: XY position imaging;surface (Z) event veto based on pulse shape risetime

CDMS II: Discrimination

CDMS II: Results

An example on background rejection and detector physics:

WIMP Direct Detection Experiments

A Couple of Current Experiments

Discrim.	Name	Location	Technique	Target	Status
None	CUORICINO	Gran Sasso	Heat	41 kg TeO ₂	running
	GENIUS-TF	Gran Sasso	Ionization	42 kg Ge in liq. N ₂	running
	HDMS	Gran Sasso	Ionization	0.2 kg Ge diode	stopped
	IGEX	Canfranc	Ionization	2 kg Ge diodes	stopped
Skokiski Skokiski	DAMA	Gran Sasso	Light	100 kg NaI	stopped
	LIBRA	Gran Sasso	Light	250 kg NaI	running
	NaIAD	Boulby mine	Light	65 kg NaI	stopped
	DRIFT	Boulby mine	Low-pressure TPC	C52	running
	ZEPLIN-I	Boulby mine	Light	4 kg Liquid Xe	stopped
	XMASS	Kamioka	Light	100 kg Xe	running
Kranster P: Kranster Kranster	CDMS-I	Stanford	Heat + Ionization	1 kg Ge + 0.2 kg Si	stopped
	CDMS-II	Soudan mine	Heat + Ionization	5 kg Ge + 1 kg Si	running
	CRESST-II	Gran Sasso	Heat + Light	10 kg CaWO ₄	running
	ArDM	Canfranc	Ionization + Light	1 ton Ar	starting
	EDELWEISS-II	Modane	Heat + Ionization	10 kg Ge	running
	XENON-10	Gran Sasso	Ionization + Light	10 kg Xe	running
	WARP	Gran Sasso	Ionization + Light	3 kg Ar	running
	ZEPLIN-II	Boulby mine	Ionization + Light	10 kg Xe	running
	PICASSO	SNO	Metastable gel		
	SIMPLE	Rustrel	Metastable gel		
	COUPP	Fermilab	Bubble Chamber	Freon-type liquids	prototype

Exlusion Limits (Feb 07)

$\alpha - \beta \gamma$ Discrimination

A 'standard' scintillator (pulse shape discrim.)

Scintillation part of a phonon – scintillation detector (CRESST)

Danewich et al – Kiev $(^{116}CdWO_4 - 330 \text{ g}, 2975 \text{ hrs})$

CRESST - LNGS $(CaWO_4 - 300 \text{ g}, 633 \text{ hrs})$

Status and Long-term Future

Status and Long-term Future

Europe:

- Portfolio of well-performing / promising techniques
- Mastering the future (example for two groups joining)
- EDELWEISS / CRESST merging \rightarrow EURECA
- Similar Convergence for Noble Gas? ELIXIR?

US:

 $CDMS \rightarrow SuperCDMS$

XENON / LUX collaborations