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Introduction

• Goal:  Compute the continuous metric by solving the
  full field equations

• Debate

• Solar System constraints / Post-Newtonian parameter

ds2 = −(1− 2GM

r
)dt2 + (1 +

2γPPNGM

r
)dr2 + r2dΩ2

ds2 ≡ gµνxµxν = −eA(r)dt2 + eB(r)dr2 + r2dΩ2

γPPN = ?
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γPPN − 1 ≈ −B

A
− 1 = (2.1± 2.3)× 10−5



Metric  vs  Palatini
• Beyond Einstein-Hilbert action:  Same action yields
  different EOM:s depending on choice of free variables

gµν

S =
1

16πG

∫
d4x
√
−gf(R) + Sm(g,ψ) , R ≡ gµνRµν(Γ)

• Metric formalism

F ≡ ∂f

∂R

FRµν −
1
2
fgµν −∇µ∇νF + gµν!F = 8πGTµν

Γρ
µν ≡

{
ρ

µν

}
g

independent
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• Palatini formalism

Larger space of allowed spacetime manifolds
Min may be found outside Levi-Civita subspace

∇ρ(
√
−gF (R)gµν) = 0 ⇒ Γρ
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ρ
µν
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independent



Metric case
• Trace equation

• For the static and spherically symmetric case

• Together with the conservation law and a given eqn
  of state, these form a complete generalization of the
  Tolman-Oppenheimer-Volkov eqns

!F +
1
3
(FR− 2f) =

8πG

3
T
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4γ
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reB

6
(
R +

f

F

)
− γA′
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Metric case
• Weak field limit              ,  Newtonian approx
  Example:                          , f(R) = R− µ4/R

d ≡ F − 1

p! ρA, B ! 1

Neglect

d′′ +
2
r
d′ − µ2(1− 3d)

3
√

d
= −8πG

3
ρ

Boundary 
condition

⇒ d =
2GM

3r
+ d0

µ2 = 4Λ/
√

3
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Metric case
• CASE I:               , non-linear term is neglible and
  expected results follow

d0 > 10−6

Results independent of boundary 
conditions (set at the center of the star)

Possible background such as DM and 
solar wind has no effect on the solution

Kainulainen, Piilonen,
Reijonen, and Sunhede,
Phys Rev D76 (2007) 024020
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FIG. 2: Shown are the functions A (red) and B (blue) for the
metric f(R) = R − µ4/R model (solid) and for GR (dotted).
Also shown is the function d−dvac (dashed green), where dvac

is the asymptotic value of d in vacuum.

to the one suggested in Ref. [18]:

f(R) = R + α
√

R , (31)

as a possible candidate for passing the Solar System con-
straints. We find that all models fail the PPN limit; as
long as the model parameters are set to give the correct
asymptotic cosmological constant and one does not add a
true cosmological constant to the f(R) function, all mod-
els produce results that are essentially indistinguishable
from the f(R) = R − µ4/R model in the Solar System
scale.

C. Solutions with d0 <
∼

10−5

Let us now go back to the class of solutions with very
small boundary values for d0. As explained above, in this
regime the matter induced evolution of d is strong enough
to push the solution to the nonlinear region inside a Sun-
like star. One can argue qualitatively that the resulting
solution will be one where d oscillates around the value of
dρ corresponding to the Palatini limit, Eqn. (8). Indeed,
since R is a real number, d must always remain positive
in the f(R) = R − µ4/R model. However, starting from
d0 # dρ at r = r0, d will first start to decrease. This
evolution is bound to be reversed by the nonlinear term
before d becomes negative, but once d starts to increase,
the nonlinearity shuts off again and the the finite density
effect turns the evolution back towards smaller d. As the
cycle gets repeated, the result is an oscillatory motion
around the Palatini limit, defined as the solution of the
equation (7). We show an example of this behaviour in
Fig. (4). The solid line shows the evolution of d, which
indeed settles to a damping oscillatory pattern around
the Palatini limit, shown by the dotted line. We also
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FIG. 3: Shown is γPPN for a metric f(R) gravity (solid) and
the corresponding solution in GR (dashed).

display the metric coefficient A (dashed) which, after a
short interval of “Newtonian f(R) evolution”, settles to a
converging oscillatory track around a path parallel to the
GR solution AGR−A0 ≈ 0. The solution for B turns out
to be numerically indistinguishable from the correspond-
ing GR solution. In summary, A and B turn out to be
very close to the GR solution simply due to the fact that
the Palatini solution is virtually indistinguishable from
the GR metric (see section III).

Note that at the center of the Sun, the oscillations oc-
cur in scale ∼ 10−28r", so it is not numerically feasible to
continue the solution all the way to the surface. We have
nevertheless run the code over thousands of oscillation
periods, verifing that the solution does indeed stabilize
around the Palatini limit. Furthermore, this behaviour
is independent of the boundary value d0. (Of course, if
one sets d0 = dρ, the solution will become flat without
any oscillations.) The above example used a very small
d0, but the qualitative behaviour of the solution should
remain the same for any d0 for which the Newtonian evo-
lution is strong enough to bring d to zero inside the star.
As a result, it is safe to conclude that for sufficiently
small d0 the solution will be such that inside and in par-
ticular outside the star A ≈ AGR and B ≈ BGR, so that
γPPN ≈ 1. In practice, the boundary for this result may
be somewhat less than d <∼ 10−5 since d needs to reach
the nonlinear region already close to the center of the
star. If not, the initial evolution of A and B will have
time to push the metric and eventually γPPN too far from
the GR solution.

1. The Dolgov-Kawasaki instability

The above section explored an attractor solution
around the Palatini limit for small values of the bound-
ary value d0. However, it turns out that this class of
solutions is related to the well known Dolgov-Kawasaki
instability [13] in the f(R) = R− µ4/R model. Perturb-
ing around the static solution, d(r) → d(r)+δd(t, r), and
expanding to first order in the perturbation one obtains

A
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Note that at the center of the Sun, the oscillations oc-
cur in scale ∼ 10−28r", so it is not numerically feasible to
continue the solution all the way to the surface. We have
nevertheless run the code over thousands of oscillation
periods, verifing that the solution does indeed stabilize
around the Palatini limit. Furthermore, this behaviour
is independent of the boundary value d0. (Of course, if
one sets d0 = dρ, the solution will become flat without
any oscillations.) The above example used a very small
d0, but the qualitative behaviour of the solution should
remain the same for any d0 for which the Newtonian evo-
lution is strong enough to bring d to zero inside the star.
As a result, it is safe to conclude that for sufficiently
small d0 the solution will be such that inside and in par-
ticular outside the star A ≈ AGR and B ≈ BGR, so that
γPPN ≈ 1. In practice, the boundary for this result may
be somewhat less than d <∼ 10−5 since d needs to reach
the nonlinear region already close to the center of the
star. If not, the initial evolution of A and B will have
time to push the metric and eventually γPPN too far from
the GR solution.

1. The Dolgov-Kawasaki instability

The above section explored an attractor solution
around the Palatini limit for small values of the bound-
ary value d0. However, it turns out that this class of
solutions is related to the well known Dolgov-Kawasaki
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• CASE II:               , non-linear term dominant and
  solution gets trapped in Palatini track

d0 < 10−6

d′′ +
2
r
d′ − µ2(1− 3d)

3
√

d
= −8πG

3
ρ

Neglible
FR− 2f = 8πGT
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FIG. 4: Shown are the functions d (solid) and A−A0 (dashed),
where A0 is chosen such that for GR A ∼ 1/r at r → ∞. The
dotted line shows the Palatini value of d, which corresponds
to R ≈ 8πGρ.

the following equation:

∂2
t δd −∇2δd ≈

µ2

6d3/2
(1 + 3d)δd ≡ −m2

dδd , (32)

The negative effective mass squared in this wave equation
is what, when restricted to the static limit, gives rise to
the damping oscillations in r around the Palatini limit
seen in Fig. (4). However, this attractor behaviour in
r comes with the price of making the solution unstable
in time. Indeed, expanding the perturbation in Fourier
modes, one finds that a mode with wave vector #k has
time dependence (for m2

d < 0)

δdk(#k, t) ∼ e±i
√

k2−|m2

d
|t , (33)

so that there are unstable modes with k < |md|. This is
the instability first found by Dolgov and Kawasaki [13].

It is important to notice that the magnitude of d con-
trols both the characteristic time scale of the instability,
tinst ∼ 1/|md|, and the shortest scale of the unstable
modes, rinst ∼ c tinst. For the GR-like solutions above
d ≈ dρ!

≈ 4 × 10−62 at the center of the Sun and one
finds an unfavourable tinst ≈ 8 × 10−30 sec. Even for
d ≈ dρDM

≈ 3 × 10−12 corresponding to the dark mat-
ter density, the time scale of the decay is still relatively
short, tinst ≈ 6 yr. The Dolgov-Kawasaki instability then
clearly forbids the Palatini tracking solutions as physical
ones. For solutions with d ≈ d0 >∼ 10−5 the instability
time is tinst > 500 kyr, and it becomes of order 1 Gyr
for d ≈ 1. In summary, one can conclude that the metric
f(R) = R − µ4/R model has both approximately stable
solutions with γPPN = 1/2 and unstable solutions with
γPPN = 1, but that it does not have any sufficiently stable
solutions that would also pass the Solar System tests.

Quickly after the discovery of the Dolgov-Kawasaki in-
stability, a way to cure it was suggested in Ref. [19]. The

idea is to add for example a quadratic term (α/2µ2)R2 to
the theory, after which the effective mass md in equation
(32) becomes (for d ( 1):

m2
d =

µ2

3α − 6d3/2
. (34)

Since the theory is stable if m2
d is positive, could one

stabilize the above GR-like solutions in this way? A pos-
itive thing to this end is that the GR-like solution does
remain an attractor for boundary values d0 <∼ 10−5 even
in this extended model. However, in order to make the
theory acceptable, one has to make sure that the mass is
positive everywhere in the Solar System. That is,

α > 2d3/2
ρDM

∼ 10−17 . (35)

Unfortunately, even for this small value of α, the function
F , which controls the density influence on the growth of
A and B in Eqns. (10-11), becomes enormous inside the
star:

Fρ = 1 +
µ4

R2
ρ

+
αRρ

µ2
≈ α

8πGρ

µ2
∼ 1011 − 1014 , (36)

for ρ ∼ ρ" ∼ 0.1 − 150 g/cm3. It is obvious that such
a value of F would completely shut off the evolution of
A and B, giving rise to a nearly massless Schwarzschild
exterior solution. This argument is quite generic and
it would thus seem to be difficult, if not impossible, to
stabilize a GR-like solution throughout a stellar system
in any metric f(R) model. Note that α ∼ 1 stabilizes the
model at all scales.

III. PALATINI f(R) GRAVITY

We have recently studied Solar System constraints on
Palatini f(R) gravity in Ref. [15], assuming that the star
was surrounded by vacuum. This section will include the
effects of the nonzero dark matter density to the analysis.
As is well known, the trace equation in the Palatini case
is an exact algebraic equation identical to (7):

FR − 2f = 8πGT , (37)

where the Ricci scalar is a function of both the metric
and the independent affine connection, R = gµνRµν(Γ).
As was was first shown in [15], the source equations for
A(r) and B(r) become:

A′ =
−1

1 + γ

(

1 − eB

r
−

eB

F
8πGrp +

α

r

)

, (38)

B′ =
1

1 + γ

(

1 − eB

r
+

eB

F
8πGrρ +

α + β

r

)

, (39)

where

α ≡ r2

(

3

4

(

F ′

F

)2

+
2F ′

rF
+

eB

2

(

R −
f

F

)

)

, (40)

β ≡ r2

(

F ′′

F
−

3

2

(

F ′

F

)2
)

, (41)

• If in this limit also

  GR-like limit exists! However…
                            solution unstable in time
  Stabilized          solution not compatible with obs

Metric case
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Palatini case
• For constant density,     is also constantR

F (R)R− 2f(R) = 8πGT ⇒ R = const. ⇒

Gµν + Λρgµν =
8πG

Fρ
Tµν , Λρ ≡

1
2

(
Rρ −

fρ

Fρ

)

Kainulainen, Reijonen,
and Sunhede
Phys Rev D76 (2007) 043503

  Schwarzschild-dS exterior,                . However…γPPN = 1

M =
∫ r!

0
dr

4πr2ρ

Fρ
+

Λρ − Λ0

6G
r3
!

• For f(R) = R− µ4/R
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F = 1 +
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√
(8πGρ)2 + 12µ4

)
≈ 8πGρ
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Summary

PALATINI
γPPN = 1• Exterior solution always Schwarschild-dS,

  Relation between density and apparent mass
  non-standard, only functions          increasing
  slower than    will yield GR gravitational field

δf(R)
R

• Non-linear terms negligible for major part of
  parameter space and               follows

METRIC

• Small region exists for which the solution follows a
  Palatini track. It appears that, as long as
  is not dominated by a cosmological constant, this
  solution is unstable or incompatible with obs.

δf(R) ≡ f(R)−R

1
2

γPPN =

Kainulainen & Sunhede, in progress


