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Aim of the talk

will not talk for hours on importance of NLO at LHC
(you know this anyway); instead:

give a schematic overview on sources of divergencies and
treatment for NLO calculations

explain idea and setup of subtraction scheme(s)

show this explicitely for single W at LHC

explain why we develop a new scheme

(only very few words about parton showers)
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I was told to...

“Please keep in mind that most people in the audience are not
experts on your particular topic and there are also many PhD
students present” (O. Brein, 12/08)

⇒ some introduction (sorry for the experts...)
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Introduction and Motivation

era of LHC approaching:
”real” data-taking hopefully early next year

LHC: hadron collider ⇒ many things to be taken into account

hadrons → partons: use parton distribution functions

processes governed by QCD:
large NLO corrections (up to 50%)

processes governed by QCD: also need parton showers

many more issues (background, underlying events, scale

dependencies, ...)

same for experimental uncertainties

here:
talk about treatment of NLO corrections on parton level

few words about parton showers

many other issues are equally important
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Structure of NLO calculations

Structure of NLO calculations
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Structure of NLO calculations

General structure of NLO cross sections (1)

Contributions to a fixed order cross section σ(ακ)

Leading order (LO) cross section, contributions to O (ακ):

σBorn =

∫
dΓm |M(m)

Born|2(s)

with dΓm phase space for m particles in final state,

M(m)
Born matrix element
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Structure of NLO calculations

General structure of NLO cross sections (2) - NLO part

NLO contributions, to O(ακ+1):
virtual (=loops) and real (additional particle emission)

virtual corrections:

σvirt =

∫
dΓm 2Re(M(m)

Born (M(m)
virt )

∗)

emission of additional real particles:

σBorn+1 =

∫
dΓm+1 |M(m+1)|2

one more particle in the final state

correct power counting requires to take both virtual and real
diagrams into account, such that

σNLO(ακ) = σ
(m)
Born(α

κ) + σ
(m)
virt (ακ+1) + σ

(m+1)
real (ακ+1)
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Structure of NLO calculations

NLO corrections - sources of divergencies

NLO calculations involve integrals over undetermined loop
momenta

Mvirt ∝
∫ ∏

i

d4ki F (ki p1 p2, ....)

(F : general function of internal and external momenta; depends on

Lorentz structure, ....)

poles for k −→ ∞: ultraviolett divergency
treated by renormalizing the parameters of the theory
(masses, couplings, ...), ⇒ not my topic here

poles for k −→ 0: infrared divergencies

⇒ will attack these in the rest of my talk
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Structure of NLO calculations

Infrared divergencies (1)

not everything lost: for well defined variables, infrared
singularities cancel for fixed O(αn) calculations
(Kinoshita, Lee, Nauenberg, 1964)

(aside: we here assume that the Born cross section σBorn is infrared

finite)

source of infrared divergency: emission of massless particles

appears as terms
1

pipj

in matrix elements
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Structure of NLO calculations

Infrared divergencies (2)

pi ,j : four momenta; pi emitter, pj emitted particle

pipj = Ei Ej (1 − cos θij)

for massless particles

Ej → 0: soft divergence

cos θij → 1: collinear divergence

both can appear at the same time: douple poles
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Structure of NLO calculations

Infrared divergencies: Treatments (1)

KNL theorem: infrared divergencies cancel between real and
vitrual contributions: eg

σreal =
1

ε
A + ..., σvirt = −1

ε
A + ...,

∑
= finite

(example for single poles)

⇒ need to have a good (analytical) parametrization

one option: give a fictitous mass to the emitted particles
⇒ divergencies appear as ln mfict, let m → 0 in the end

typically used in QED calculations
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Structure of NLO calculations

Infrared divergencies: Treatments (2)

second option: go from D = 4 to D = 4− 2 ε dimensions

poles then appear as

σreal =
A

ε2
+

B

ε
+ ....

A, B depend on the splitting process

eg in QCD p̃i → pi + pj (omitted color factors etc)

q → q g : ∝ 1

ε2
+

3

2 ε

g → q q̄ : ∝ − 1

3ε

poles arise from integration of phase space of pj

important: this behaviour is the same for all processes
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Subtraction Schemes

Subtraction Schemes
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Subtraction Schemes

Dipole subtraction: general idea

know that pole structure always the same

can also show: in the singular limits,

|M(m+1)|2 −→ Dij(pi , pj) |M(m)|2, Dij ∼
1

pipj
(1)

Dij : dipoles, contain complete singularity structure

also means that

∫
dΓm+1


|M(m+1)|2 −

∑

ij

Dij |M(m)|2

 = finite

general idea of dipole subtraction: make use of (1), shift
singular parts from m + 1 to m particle phase space
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Subtraction Schemes

Dipole subtraction for total cross sections

Master formula

σNLO =∫
dΓm

(
|M|2Born + 2Re(MBornM∗

virt) + F̃sing|M|2Born

)
J(m)

+

∫
dΓm+1

(
|M|2real − Fsing|M|2Born

)
J(m+1)

⇒ effectively added ”0”; both integrals finite
(major work: Catani, Seymour, 1996)

Js: define the quantities which are measured; here you put in
guarantee that Born part is infrared finite
(eg require that pkpl > p2

min)

F̃ =
∫

dpj F ; ⇐= this is where all the work is
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Subtraction Schemes

Interlude: energy momentum conservation (1)

...unfortunately, some complications are involved...

previous slide: add and subtract ”0” in terms of

∫
dΓmF̃sing|M(m)

Born|2 −
∫

dΓm+1Fsing|M(m)
Born|2

addition and subtraction takes place in different phase spaces

m ←→ m + 1

somehow need to define a matching (m + 1) ⇒ (m)

why ?? want all external particles to be onshell

here: p2 = 0 for massless particles
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Subtraction Schemes

Interlude: energy momentum conservation (2)

example: q → q + g splitting

m + 1 : q(pi ) + g(pj ), m : q(pĩ )

everything onshell: p2
ĩ

= 0, p2
i = 0, p2

j = 0

not possible if pĩ = pi + pj !!

⇒ need to redistribute the momenta somehow

p
(m)
ã = F

(
p

(m+1)
a , p

(m+1)
b , ....

)

also need to keep total energy/ momentum conserved:

∑

m

pã
!
=

∑

m+1

pa

(sum over outgoing particles only)
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Subtraction Schemes

Second ingredient: Parametrization of integration variables

again: remember you have

Fsing ∝ Dij , F̃sing =

∫
dΓ1 Dij , dΓ1 ∝ d4pj δ(p2

j )

=⇒ F̃sing ∝
∫

d4pj δ(p2
j )Dij

3 free variables (in D dimensions: D − 1)

!! need to be written in terms of m particle variables !!

now all ingredients:
total energy momentum conservation, onshellness of
external particles, need for integration variables
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Subtraction Schemes

So far (1):

shown that NLO corrections are important for hadronic
processes

singularities can occur from ultraviolett and infrared
divergencies

ultraviolett: handled by renormalizing the theory

infrared: cancel in fixed order calculations

for the latter: need good pole parametrizations
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Subtraction Schemes

So far (2):

one way to handle this: dipole subtraction schemes

infinities are ”shifted” around in m, m+1 contributions of σtot

complications: energy momentum conservation, onshellness or
external particles, parametrization of integration variables

master formula

σNLO =∫
dΓm

(
|M|2Born + 2 Re(MBornM∗

virt) + F̃sing|M|2Born

)
J(m)

+

∫
dΓm+1

(
|M|2real − Fsing|M|2Born

)
J(m+1)
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Subtraction Schemes

In the following:

talk about Catani Seymour dipole scheme

talk about (alternative) Nagy Soper dipole scheme

show some results and comparisons for the latter

will NOT talk about parton showers (work done by collaborators)

...work in progress...
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Subtraction Schemes

Catani Seymour subtraction scheme
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Subtraction Schemes

Catani Seymour Dipoles (the praise)

Catani, Seymour 1996: suggested dipole subtraction scheme
for NLO calculations, massless particles

became ”standard” for many NLO calculations

paper in general handled as a ”toolbox”, ie formulas can be
extracted without actually understanding how to get there
and where they come from

some difficulty: understanding the notation

has been applied in numerous calculations
(8. Jan. 09: 537 citations)

also very helpful for (becoming) experts

follow up work: massive particles (Catani, Dittmaier, Seymour,

Trocsanyi, 02), combined with phase space slicing (Nagy, 03)
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Subtraction Schemes

Subtraction schemes

also other subtraction schemes around (as eg implemented in
RacoonWW, ...)

important message:

poles have to be the same; finite parts can differ

= behaviour in the singular regions is unique
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Subtraction Schemes

Single W using Catani Seymour dipoles

(and more details about subtraction schemes)
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Processes at hadron colliders: general

hadron colliders (as Tevatron, LHC) collide hadrons

QCD: talks about partons

transition: parton distribution functions (PDFs) fl(x , µF );
l = q, q̄, g flavour, x momentum fraction, (µF factorization

scale)

masterformula

σhadr(p p̄ → X ) =
∑

l1,l2

∫
dx1

∫
dx2 fl1(x1)fl2(x2) σpart(x1, x2; l1l2 → X )

perturbative, nonperturbative part
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Single W with Catani Seymour

Sample process: single W production

(some transparencies: courtesy of Chenghan Chung, RWTH Aachen)

now: do everything at parton level, worry about PDFs later

tree level: q q̄ → W

q

q̄
W

virtual corrections: q q̄ → W

q

q̄
W
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Single W with Catani Seymour

Single W production: real emissions (W + jet)

real corrections: q q̄ → W + g

q

q̄

g

W

q

q̄ g

W

real corrections: g q̄ → W q̄, g q → W q (same order in αs !!)

g

q̄

q̄

W

q

g q

W

(+ 2 more diagrams...)
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Single W with Catani Seymour

Dipoles à la Catani Seymour

In the following:
Concentrate on qq̄ induced processes

(Rest simultaneously)

first: define general kinematics

q(p1) + q̄(p2) → W (p3) (+ g(p4))

where we need to keep track of m,m + 1 particle space

in the following: m:p̃i
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Single W with Catani Seymour

Single W: squared amplitudes

Born:
1

4

1

9

∑

spins, colors

|MBorn|2 =
g2

12
m2

W

real emission

1

4

1

9

∑

spins, colors

|Mreal|2 =
8

9
g2 αs π

t2 + u2 + 2s p2
3

t u

virtual contribution (in D = 4− 2 ε dimensions)

|M̃v |2 = |MBorn|2
2αs

3π

1

Γ(1− ε)

(
4πµ2

Q2

)ε {
− 2

ε2
− 3

ε
− 8 + π2

}
,
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Single W with Catani Seymour

Single W: pole structures

real emission

1

4

1

9

∑

spins, colors

|Mreal|2 =
8

9
g2 αs π

t2 + u2 + 2s p2
3

t u

virtual contribution (in D = 4− 2 ε dimensions)

|M̃v |2 = |MBorn|2
2αs

3π

1

Γ(1− ε)

(
4πµ2

Q2

)ε {
− 2

ε2
− 3

ε
− 8 + π2

}
,

single poles,
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Single W with Catani Seymour

Single W: pole structures

real emission

1

4

1

9

∑

spins, colors

|Mreal|2 =
8

9
g2 αs π

t2 + u2 + 2s p2
3

t u

virtual contribution (in D = 4− 2 ε dimensions)

|M̃v |2 = |MBorn|2
2αs

3π

1

Γ(1− ε)

(
4πµ2

Q2

)ε {
− 2

ε2
− 3

ε
− 8 + π2

}
,

single poles, double poles
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Single W with Catani Seymour

Subtraction terms

2 particle phase space (real emission)

D14,2 + D24,1 =
8

9
π αs g2

(
s2 + (s + t + u)2

t u

)

=
1

4

1

9

∑
|Mreal|2

︸ ︷︷ ︸
singular

+
16

9
g2 αs π

︸ ︷︷ ︸
finite

1 particle phase space (virtual contribution)

I(ε)|Mb|2 =
2αs

3π

1

Γ(1 − ε)
(−8 +

2

3
π2)|Mb|2

︸ ︷︷ ︸
finite

− |M̃v |2︸ ︷︷ ︸
singular (+finite)

all singular terms will disappear in subtraction
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Single W with Catani Seymour

Integrated Dipoles in more details: I , K , P (1)

m + 1 phase space: in principle easy

∫
dΓm+1

(
|Mreal|2 −

∑
D

)
, finite

m particle phase space: more complicated

need integration variables (emission from p1):

x = 1− p4(p1 + p2)

p1p2
softness, ṽ =

p1p4

p1p2
collinearity
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Single W with Catani Seymour

Integrated Dipoles in more details: I , K , P (2)

in principle, obtain
∫

dΓ1 D =
∫ 1
0 dx

(
I(ε) + K̃(x , ε)

)

I(ε) ∝ δ(1 − x): corresponds to loop part

K̃(x , ε) contains finite parts as well as collinear singularities

latter need to be cancelled by adding collinear counterterm

1

ε

(
4πµ2

µ2
F

)ε

Pqq(x)

depends on factorization scale µF (Pqq(x) splitting function)

PDFs come in again: term already accounted for by folding w
PDF, needs to be subtracted

for q g → W q like processes, only singularity which appears
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Single W with Catani Seymour

Dipole subtraction: Master formula (1)

Symbolic Masterformula

σ = σLO + σNLO

σNLO =

∫

m+1
dσR +

∫

m

dσV +

∫
dσC

=

∫

m+1
(dσR − dσA) +

∫

m

(
dσÃ + dσV + dσC

)
,

σNLO
m (s) =

∫

m

{
|M̃virt(s; ε)|2 + I(ε)|MBorn(s)|2

+

∫ 1

0
dx (K(x) + P(x ;µF )) |MBorn(x , s)|2

}
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Single W with Catani Seymour

Dipole subtraction: Master formula (1)

Symbolic Masterformula

σ = σLO + σNLO

σNLO =

∫

m+1
dσR +

∫

m

dσV +

∫
dσC

=

∫

m+1
(dσR − dσA) +

∫

m

(
dσÃ + dσV + dσC

)
,

σNLO
m (s) =

∫

m

{
|M̃virt(s; ε)|2 + I(ε)|MBorn(s)|2

+

∫ 1

0
dx (K(x) + P(x ;µF )) |MBorn(x , s)|2

}
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Single W with Catani Seymour

Dipole subtraction: Master formula (1)

Symbolic Masterformula

σ = σLO + σNLO

σNLO =

∫

m+1
dσR +

∫

m

dσV +

∫
dσC

=

∫

m+1
(dσR − dσA) +

∫

m

(
dσÃ + dσV + dσC

)
,

σNLO
m (s) =

∫

m

{
|M̃virt(s; ε)|2 + I(ε)|MBorn(s)|2

+

∫ 1

0
dx (K(x) + P(x ;µF )) |MBorn(x , s)|2

}
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Single W with Catani Seymour

Dipole subtraction: Master formula (2)

Real Masterformula (s = (pa + pb)
2)

σ(s) =

∫

m

dΦ(m)(s)
1

nc(a)nc(b)
|M(m)|2(s)F (m)

J

+

∫
dΦ(m+1)(s)

{
1

nc(a)nc(b)
|M(m+1)|2(s))F (m+1)

J −
∑

dipoles

(D · F
(m)
J )





+

∫
dΦ(m)(s)

{
1

nc(a)nc(b)
|M(m)|21 loop(pa, pb) + I(ε)|M(m)|2(s)

}

ε=0

F
(m)
J ,

+

{∫
dxa dxbδ(x − xa) δ(xb − 1)

∫
dΦ(m)(xapa, xbpb)|M(m)|2(xapa, xbpb)

×
(
Ka,a′(x) + Pa,a′(xapa, xbpb, x ; µ2

F )
)}

+ (a ↔ b)

where all colour/ phase space factors have been accounted for
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Single W with Nagy Soper

Single W using Nagy Soper Dipoles

(and some details about parton shower matching)
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Single W with Nagy Soper

Nagy Soper dipoles: shower algorithm (commercial slide)

Nagy Soper dipoles: suggested in 2007 (arXiv:0706.0017) in the
context of parton showers

”Parton showers with quantum interference”
⇒ aim is to treat parton showers on a quantum-mechanical
level (usual treatment: classical, ie averaging over spins, no
interference effects, only leading color)

follow up work: (same authors)

”Parton showers with quantum interference: Leading color, spin
averaged” (arXiv:0801.1917)
shows equivalence to standard showers in singular limit

”Parton showers with quantum interference: Leading color, with
spin” (arXiv:0805.0216 )

inclusion of spin effects
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Single W with Nagy Soper

From parton showers to subtraction schemes

basic idea: can use the splitting functions in the parton
shower as dipole subtraction terms

⇒ have same behaviour in singular limits

”turn around” of idea suggested by Nagy, Soper
(hep-ph/0503053):
use Catani Seymour Dipoles for shower algorithm

has lead to development of Catani Seymour-like showers:
Dinsdale, Ternick, Weinzierl (arXiv:0709.1026),

Schumann, Krauss (arXiv:0709.1027)

advantage: simplify treatment of double counting for
combination with NLO calculations
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Single W with Nagy Soper

Interlude: Double counting for showers and NLO (1)

Very very short...

double counting: hard real emissions are described in both
shower and ”real emission” matrix element

want:hard: matrix element, soft: shower (always talk about 1

jet)

can be achieved by adding and subtracting a counterterm

−
∫

m+1

dσPS|m+1 +

∫

m+1

dσPS|m

details in hep-ph/0204244: ”Matching NLO QCD computations

and parton shower simulations” (Frixione, Webber), MC@NLO
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Single W with Nagy Soper

Interlude: Double counting for showers and NLO (2)

important: have new terms in m + 1 phase space

∫

m+1


dσR −dσA+dσPS |m︸ ︷︷ ︸

=0

−dσPS |m+1




same splitting functions: second and third term cancel !!
left with ∫

m+1

(
dσR − dσPS |m+1

)

⇒ improves numerical efficiency
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Single W with Nagy Soper

Single W using NS Dipoles

Results
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Single W with Nagy Soper

Nagy Soper subtraction terms

2 particle phase space (real emission)

D14,2 + D24,1 =
8

9
π αs g2

(
t2 + u2 + 2 s p2

3

t u

)

=
1

4

1

9

∑
|Mreal|2

︸ ︷︷ ︸
singular

1 particle phase space (virtual contribution)

I(ε)|Mb|2 =
2αs

3π

1

Γ(1 − ε)
(−8 +

2

3
π2)|Mb|2

︸ ︷︷ ︸
finite

− |M̃v |2︸ ︷︷ ︸
singular (+finite)

difference to Catani Seymour:
subtraction in m particle phase space, K(x) terms

pole structure the same, finite terms differ �
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Single W with Nagy Soper

Numerical results for single W (complete),
NLO corrections in percent ( slide by C. Chung)

σNLO−σLO

σLO
as a function of

√
Shadr

input: MW = 80.35 GeV, PDF ⇒ cteq6m, αs(MW ) = 0.120299

corrections up to 30%

σNLO − σBorn

σBorn

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14√
Shadr[TeV]
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Single W with Nagy Soper

Numerical results for single W (complete),
relative difference ( slide by C. Chung)

plot relative difference between CS and NS: σCS−σNS

σCS

input: MW = 80.35 GeV, PDF ⇒ cteq6m, αs(MW ) = 0.120299

σCS − σNS

σCS

−0.001

−5×10−4

0

5×10−4

0.001

0 2 4 6 8 10 12 14√
Shadr[TeV]

agree on the sub-permill level �
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Single W with Nagy Soper

Why bother ??

2 different schemes, giving same results, one well established:
why bother ??

first reason: have a parton shower with some additional
features nearly ready ⇒ matching

second reason: remember: onshell-ness for external particles
required shifts of momenta when going from m + 1 to m

particle phase space !!

!! biggest difference !!
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Single W with Nagy Soper

Shifting momenta

Catani Seymour: define emitter-spectator pair, momentum
goes to 1 additional particle only

⇒ quite easy integrations

⇒ for increasing number of particles, huge number of
transformation necessary ⇒ code instabilities, long runtimes,
....

Nagy Soper: shift momenta to all non-emitting external
particles

number of transformations = number of emitters

eq γ∗ → q q̄ g (m=3 at LO): 12 (CS) vs 6(NS)

leads (unfortunately) to more complicated integrals for the m

phase space integrals, some purely numerical

in general: # of transformations: CS∼ N3
jets/2, NS∼ N2

jets/2
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Status Quo and Outlook
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Status quo (instead of Summary)

goal: establish NS dipole formalism

need to countercheck a) singularities, b) finite terms

a) almost completely done; missing: processes w more than 2
gluons in the final state (complicated integration measure)

b) counterchecked for all processes with initial state partons
only, rest needs checks (some integrals still missing; see a))

Checked processes

single W at hadron colliders:
complete equivalence, agreement with MCFM (see talk)

Dijet production at lepton colliders:
singularity structure checked, rest underway

deep inelastic scattering:
singularity cancellation for virtual parts checked
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Outlook

Outlook

finish integration of missing parts, check by application to
simple processes for unchecked splitting functions
(g → gg , m > 2 in final state )

implement on matrix element level

match with parton shower (Z. Nagy; underway)

apply in (new) higher order calculations

.... (more to come)

! Thanks for listening !
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Appendix
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Real formulas

q → q g for initial state quarks: Catani Seymour (1)

q(p̃1) → q(p1) + g(p4), q enters hard interaction

Dipole:

D14,2 = −8π µ2 αs CF

s + t + u

(
2 s (s + t + u)

t (t + u)
+ (1− ε)

t + u

t

)

matching (p̃2 = p2)

p̃1 = x p1, x = 1− p4 (p1 + p2)

(p1p2)

p̃
µ

k = Λµ

ν pν

k , (k: final state particles)

Λµν = −gµν − 2 (K + K̃ )µ(K + K̃ )ν

(K + K̃ )2
+

2KµK̃ ν

K 2

K = p1 + p2 − p4, K̃ = p̃1 + p2
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Real formulas

q → q g for initial state quarks: Catani Seymour (2)

integration variables:

v =
p1p4

p1p2
, x = 1− p4 (p1 + p2)

(p1p2)

in p1, p2 cm system: E4 → 0 ⇒ x → 1 (softness)
cos θ14 → 1 ⇒ v → 0 (collinearity)

Dipole in terms of integration variables

D14,2 = −8π αs CF

v x s

(
1 + x2

1− x
− ε(1− x)

)

integration measure

[dpj ] =
(2 p1p2)

1−ε

16 π2

dΩd−3

(2 π)1−ε
dv dx (1−x)−2 ε

[
v

1− x

(
1− v

1− x

)]
−ε

where v ≤ 1− x and all integrals between 0 and 1
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Real formulas

q → q g for initial state quarks: Catani Seymour (3)

result

µ2ε

∫
[dpj ] D

14,2 =
αs

2 π

1

Γ(1− ε)
CF

(
2µ2π

p1p2

)ε

×
∫ 1

0

dx


I(ε)δ(1 − x) + K̃(x , ε) − 1

ε
Pqq(x)

︸ ︷︷ ︸
killed by coll CT




with

I(ε) =
1

ε2
+

3

2ε
− π2

6

K(x) = (1 − x)− 2 (1 + x) ln(1− x) +

(
4

1− x
ln(1− x)

)

+

Pqq(x) =

(
1 + x2

1− x

)

+

regularized splitting function
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Real formulas

q → q g for initial state quarks: Nagy Soper (1)

q(p̃1) → q(p1) + g(p4), q enters hard interaction

Dipole:

D14,2 = −8π µ2 αs CF

s + t + u

(
2 s u (s + t + u)

t (t2 + u2)
+ (1− ε)

u

t

)

as CS, same pole structure as CS

matching, integration variables, integration measure:
as Catani Seymour(v ↔ y)

Dipole in terms of integration variables

D14,2 = −8παs CF

x s

×
(

1− x − y

y
(1− ε) +

2 x

y (1− x)
− 2 x [2 y − (1− x)]

(1− x)[y2 + (1− x − y)2]

)
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Real formulas

q → q g for initial state quarks: Nagy Soper (2)

result

µ2ε

∫
[dpj ] D

14,2 =
αs

2 π

1

Γ(1− ε)
CF

(
2 µ2π

p1p2

)ε

×
∫ 1

0

dx


I(ε)δ(1− x) + K̃(x , ε) − 1

ε
Pqq(x)

︸ ︷︷ ︸
killed by coll CT




with

K(x) =

(1− x)− 2 (1 + x) ln(1− x) +

(
4

1− x
ln(1− x)

)

+

−(1− x)

equivalence of dipoles schemes checked analytically
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Real formulas

Final state g → q q̄ using Catani Seymour (1)

g(p̃i ) → q(pi ) + q̄(pj ),
spectator: any other final state parton, pk

Dipole:

D ij ,k ∝ 1

pipj

[
1− 2 (pipk) (pjpk)

(1− ε) (pipk + pjpk)2

]

matching

p̃i = pi + pj −
y

1− y
pk y =

pipj

pipj + pipk + pjpk

p̃
µ

k =
1

1− y
pk

all other final state particles untouched
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Real formulas

Final state g → q q̄ using Catani Seymour (2)

integration variables: y , z

z =
pipk

pipk + pjpk

y : softness, z collinearity

Dipole in terms of integration variables

D ij ,k ∝ 1

y

[
1− z (1− z)

1− ε

]

integration measure

[dpj ] =
(2 p̃i p̃k)

1−ε

16 π2

dΩd−3

(2 π)1−ε
dz dy (1− y)1−2 εy−ε [z (1− z)]

−ε

where all integrals between 0 and 1
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Real formulas

Final state g → q q̄ using Catani Seymour (3)

result

µ2ε

∫
[dpj ]D

ij ,k =
αs

2π

1

Γ(1 − ε)
TR

(
2µ2π

p̃i p̃k

)ε [
− 2

3 ε
− 16

9

]
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Outline Introduction and motivation NLO calculations and subtraction schemes Single W: Catani Seymour vs Nagy Soper Dipoles

Real formulas

Final state g → q q̄ using Nagy Soper (1)

g(p̃i ) → q(pi ) + q̄(pj ),
spectator: all other final state partons

Dipole:

D ij ∝ 1

pipj

[
1− 2 (pi ñ) (pj ñ)

(1− ε) (pi ñ + pj ñ)2

]

with

ñ =
1 + y + λ

2 λ
Q − a

λ
(pi + pj)

y =
pipj

(pi + pj)Q − pipj

λ =
√

(1 + y)2 − 4 a y ,

a =
Q2

(pi + pj)Q − pipj

and Q cm energy of the incoming particles
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Real formulas

Final state g → q q̄ using Nagy Soper (2)

matching

p̃i =
1

λ
(pi + pj)−

1− λ + y

2λ a
Q

p̃
µ

k = Λµ

νp
ν

k all final state particles

Λµν = −gµν − 2 (K + K̃ )µ(K + K̃ )ν

(K + K̃ )2
+

2KµK̃ ν

K 2

K = Q − pi − pj , K̃ = Q − p̃i

integration variables: y , z

z =
pj ñ

pi ñ + pj ñ

y : softness, z collinearity
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Real formulas

Final state g → q q̄ using Nagy Soper (3)

Dipole in terms of integration variables

D ij ∝ 1

y

[
1− z (1− z)

1− ε

]

integration measure

[dpj ] =
(2 p̃i Q)1−ε

16 π2

dΩd−3

(2 π)1−ε
dz dy λ1−2 εy−ε [z (1 − z)]

−ε

z : between 0 and 1
y : between 0 and ymax =

(√
a −
√

a − 1
)2
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Real formulas

Final state g → q q̄ using Nagy Soper (4)

result

µ2ε

∫
[dpj ]D

ij = TR
αs

2π

αs

Γ(1− ε)

(
2π µ2

pĩQ

)ε

×
[
− 2

3 ε
− 16

9
+

2

3
[(a − 1) ln(a − 1)− a ln a]

]
,

for a = 1, reduces completely to Catani Seymour result

(reason: a = 1 implies only 2 particles in the final state, ñ → pk ,

⇒ complete equivalence)

tradeoff: all final state particles get additional momenta:
integral more complicated, but fewer transformations
necessary

however: integrals with gluons in m + 1 final state even more
complicated !!! ⇒ next time....
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