Outline

Automation of Dipole Subtraction Method in MadGraph

Nicolas Greiner in collaboration with R.Frederix,T.Gehrmann

Durham, 05.03.2009

Nicolas Greiner

MadDipole

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Outline

Introduction

- Status of Automation
- Dipole Subtraction Method
- MadGraph/MadEvent

2 MadDipole

イロト イヨト イヨト イヨト

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

LO event generator tools:

- PYTHIA [Sjoestrand,Mrenna,Skands]
- HERWIG/HERWIG++

[Marchesini,Webber],[Baehr et al.]

- MadGraph/MadEvent
 [Stelzer,Long],[Maltoni,Stelzer],[Alwall et al.]
- CompHep/CalcHep

[Boos et al.],[Pukhov]

- SHERPA [Gleisberg et al.]
- WHIZARD [Kilian,Ohl,Reuter]
- ALPGEN

[Mangano, Moretti, Piccinini, Pittau, Polosa]

• HELAC [Kanaki,Papadopoulos]

NLO calculation programs:

- MCFM [Campbell,Ellis]
- NLOJET++ [Nagy]
- MC@NLO [Frixione,Webber]

3

POWHEG [Nason et al.]

• ...

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

・ロン ・ 日 ・ ・ 目 ・ ・ 日 ・

크

Automation of loop calculations:

Enormous progress in recent years : Unitarity methods, recursion relations, generalized unitarity, OPP-method, twistor-inspired methods...

- \rightarrow Packages like
 - CutTools [Ossola,Papadopoulos,Pittau]
 - BlackHat [Berger et al.]
 - Rocket [Giele,Zanderighi]
 - Golem [Binoth et al.]
 - ...

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

イロン イヨン イヨン -

2

Automation of subtraction methods:

Several algorithms for subtraction terms:

- Dipole subtraction [Catani,Seymour],[Catani,Dittmaier,Seymour,Trocsanyi]
- Residue subtraction [Frixione,Kunszt,Signer]

Antenna subtraction

[Kosower],[Campbell,Cullen,Glover],[Gehrmann-DeRidder,Gehrmann,Glover],[Daleo,Gehrmann,Maitre]

First automation of dipole subtraction in SHERPA [Gleisberg,Krauss] and TeVJet [Seymour,Tevlin] and attempts for external library interfaced with MadGraph. [Hasegawa,Moch,Uwer]

 \rightarrow No general tool available for arbitrary process and massive dipoles.

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

イロト イヨト イヨト イヨト

æ

Why Dipole Subtraction Method?

- Antenna formalism would be less complicated (1 antenna \sim 2 dipoles).
- Antenna formalism can be extended to NNLO.
- + Dipole Method: straightforward Feynman diagrammatic approach
- + 1 dipole $\hat{=}$ 1 Feynman diagram

 \rightarrow color treatment 'easy', would be more difficult in antenna formalism.

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

크

Dipole Subtraction Method: [Catani,Seymour] [Catani,Dittmaier,Seymour,Trocsanyi] Find expressions $d\sigma^A$ for infrared singularities and subtract/add them

$$\Rightarrow \sigma^{NLO} = \int_{m+1} \left[\left(\mathbf{d}\sigma^{R} \right) - \left(\mathbf{d}\sigma^{A} \right) \right] + \int_{m} \left[\mathbf{d}\sigma^{V} + \int_{1} \mathbf{d}\sigma^{A} \right]$$

- Dipoles contain all infrared singularities occuring in specific process.
- Cross sections for real emission and virtual corrections are finite and can be calculated independently.

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

$$\mathcal{D}_{ij,k} (p_1,...,p_{m+1}) = -\frac{1}{2p_i \cdot p_j}$$

$$\cdot_m < 1,...,\widetilde{ij},...,\widetilde{k},...,m+1 | \frac{\mathbf{T}_k \cdot \mathbf{T}_{ij}}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} | 1,...,\widetilde{ij},...,\widetilde{k},...,m+1 >_m .$$

with emitter *i* and spectator *k* and dipole splitting function $V_{ij,k}$.

$$\widetilde{p}_{k}^{\mu} = \frac{1}{1 - y_{ij,k}} p_{k}^{\mu} , \quad \widetilde{p}_{ij}^{\mu} = p_{i}^{\mu} + p_{j}^{\mu} - \frac{y_{ij,k}}{1 - y_{ij,k}} p_{k}^{\mu} , \quad y_{ij,k} = \frac{p_{i}p_{j}}{p_{i}p_{j} + p_{j}p_{k} + p_{k}p_{i}}.$$
Note: $p_{i}^{\mu} + p_{j}^{\mu} + p_{k}^{\mu} = \widetilde{p}_{ij}^{\mu} + \widetilde{p}_{k}^{\mu}$ and $\widetilde{p}_{ij}^{2} = \widetilde{p}_{k}^{2} = 0.$

Status of Automation Dipole Subtraction Method MadGraph/MadEvent

イロト イヨト イヨト イヨト

MadGraph: [Stelzer,Long]

Type in process: e.g. $e+e- \rightarrow u u^{\sim}$

 \Rightarrow MadGraph provides a Fortran code that calculates $|\mathcal{M}|^2$ for a given phase space point, summed over colors and helicities.

MadEvent: [Maltoni, Stelzer]

- Takes MadGraph output and integrates over phase space.
- Event generator.

MadGraph/MadEvent public available: http://madgraph.hep.uiuc.edu/

MadDipole: [Frederix,Gehrmann,NG] Type in real emission process: e.g. $e+e- \rightarrow u u^{\sim}g$ \Rightarrow Analogous to MadGraph, MadDipole returns Fortran code for:

- Matrixelement for real emission.
- All possible dipoles for all possible born processes.

Further information and download: http://madgraph.hep.uiuc.edu/

イロン イヨン イヨン イヨン

$$\mathcal{D}_{ij,k} \sim m < 1,..,\widetilde{ij},..,\widetilde{k},..,m+1 | \frac{\boldsymbol{T}_k \cdot \boldsymbol{T}_{ij}}{\boldsymbol{T}_{ij}^2} \boldsymbol{V}_{ij,k} | 1,..,\widetilde{ij},..,\widetilde{k},..,m+1 >_m$$

Splitting function $V_{ij,k}$ is tensor in helicity space. $V_{ij,k} = V_{ij,k}^{\mu\nu}$ \Rightarrow Need modification of color and helicity management.

1. Color management:

- Use already existing routines \rightarrow fast and correct.
- Insert additional operators in existing color calculation.
 Note: *T_k* · *T_{ij}* connect bra and ket → need different labelling. → new routines for squaring. → large objects.

2. Helicity management:

 $V_{ij,k} = V_{ij,k}^{\mu
u}$ combines different helicity combinations.

$$\begin{aligned} \mathcal{D}_{ij,k} &\sim m\langle 1, ... \tilde{j}, ..., \tilde{k}, ..., m+1 |_{\mu} \mathbf{V}_{ij,k}^{\mu\nu} \,_{\nu} | 1, ... \tilde{j}, ..., \tilde{k}, ..., m+1 \rangle_{m} \\ &= m\langle 1, ... \tilde{j}, ..., \tilde{k}, ..., m+1 |_{\mu'} \left(-g_{\mu}^{\mu'} \right) \mathbf{V}_{ij,k}^{\mu\nu} \left(-g_{\nu}^{\nu'} \right)_{\nu'} | 1, ... \tilde{j}, ..., \tilde{k}, ..., m+1 \rangle_{m} \\ &= \sum_{\lambda_{a}, \lambda_{b}} m\langle ... |_{\mu'} \,_{\epsilon}^{*\mu'} (\lambda_{b}) \epsilon_{\mu} (\lambda_{b}) \mathbf{V}_{ij,k}^{\mu\nu} \,_{\epsilon}^{*} (\lambda_{a}) \epsilon^{\nu'} (\lambda_{a})_{\nu'} | ... \rangle_{m} \\ &= \sum_{\lambda_{a}, \lambda_{b}} m\langle ... |_{\lambda_{b}} \,_{\nu} V(\lambda_{b}, \lambda_{a})_{\lambda_{a}} | ... \rangle_{m} \end{aligned}$$

with $V(\lambda_b, \lambda_a) = \epsilon_\mu(\lambda_b) \mathbf{V}_{ij,k}^{\mu\nu} \epsilon_\nu^*(\lambda_a)$ and $\epsilon^\mu(\lambda)_\mu | \ldots \rangle_m = {}_{\lambda} | \ldots \rangle_m$.

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Phase space restrictions

Subtraction only needed when approaching divergency. \Rightarrow Cut away non-singular parts of phase space by additional parameter $\alpha \in [0, 1]$. [Nagy,Trocsanyi]

$$\begin{split} d\sigma^{A}_{ab} &= \sum_{\{n+1\}} d\Gamma^{(n+1)}(p_{a}, p_{b}, p_{1}, ..., p_{n}+1) \frac{1}{S_{\{n+1\}}} \\ &\times \left\{ \sum_{\substack{\text{pairs} \\ i,j}} \sum_{k \neq i,j} \mathcal{D}_{ij,k}(p_{a}, p_{b}, p_{1}, ..., p_{n+1}) F_{J}^{(n)}(p_{a}, p_{b}, p_{1}, ..., \tilde{p}_{ij}, \tilde{p}_{k}, ..., p_{n+1}) \Theta(y_{ij,k} < \alpha) \right. \\ &+ \sum_{\substack{\text{pairs} \\ i,j}} \left[\mathcal{D}^{a}_{ij}(p_{a}, p_{b}, p_{1}, ..., p_{n+1}) F_{J}^{(n)}(\tilde{p}_{a}, p_{b}, p_{1}, ..., \tilde{p}_{ij}, ..., p_{n+1}) \Theta(1 - x_{ij,a} < \alpha) \right. \\ &+ \left. \sum_{\substack{\text{pairs} \\ i,j}} \left[\mathcal{D}^{ai}_{k}(p_{a}, p_{b}, p_{1}, ..., p_{n+1}) F_{J}^{(n)}(\tilde{p}_{a}, p_{b}, p_{1}, ..., \tilde{p}_{k}, ..., p_{n+1}) \Theta(u_{i} < \alpha) + (a \leftrightarrow b) \right] \right. \\ &+ \left. \sum_{\substack{\text{pairs} \\ i,j}} \left[\mathcal{D}^{ai,b}_{k}(p_{a}, p_{b}, p_{1}, ..., p_{n+1}) F_{J}^{(n)}(\tilde{p}_{a}, p_{b}, \tilde{p}_{1}, ..., \tilde{p}_{n+1}) \Theta(\tilde{v}_{i} < \alpha) + (a \leftrightarrow b) \right] \right. \end{split}$$

 \rightarrow 4 parameters: alpha_ff, alpha_fi, alpha_if, alpha_ii, adjustable by user.

Massive particles

- Motivation: collinear radiation off massive particle finite, but source of possibly large logs.
- Finite dipoles put in separate routine dipolsumfinite(...).

Not evaluated by default but can be switched on if needed.

• Recover massless results in the limit of vanishing masses.

イロン イヨン イヨン イヨン

Check: In the limit $s_{ij} = p_i \cdot p_j \rightarrow 0$ dipoles approach matrixelement.

Ratio $|\mathcal{M}|^2 / \sum_{\text{dipoles}} \rightarrow 1$. Difference integrable.

・ロン ・回 と ・ ヨン・

크

Package contains routine that checks all limits.

Limit: p(4).p(5) goes to ze	ro						
p(4).p(5)/s	s(1,2) ,	sqrt(s(4,	5))	, M ^2 ,		Sub.term ^2 ,	, M	^2/ Sub.term ^2	
0.315364±00 0.737460±01 0.737460±01 0.3283±01 0.143002±01 0.113982±01 0.101978±01 0.573922±02 0.253423±02 0.251508±02 0.473893±03 0.317967±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145372±03 0.145575±03 0.156505±05 0.152407±05 0.15240).561573E+0;).271562E+0;).231859E+0;).182437E+0;).119709E+0;).106762E+0;).100984E+0;).503411E+0;).503411E+0;).503411E+0;).438595E+0;).219065E+0;).120571E+0;).120571E+0;).780396E+0;).509091E+0;).431552E+0;).431552E+0;).431552E+0;).125102E+0;).125102E+0;).123453E+0;).123453E+0;).124552E+0;).1245552E+0;).1245552E+0;).1245555552E+0;).124555555555555555555555555555555555555		0.226532E-06 0.712382E-05 0.112382E-05 0.114455E-05 0.300252E-05 0.37228E-05 0.37228E-05 0.37228E-05 0.33728E-02 0.36398E-04 0.236398E-04 0.526637E-03 0.526637E-03 0.526637E-02 0.303571E-01 0.580746E-02 0.56871E-01 0.580746E-02 0.480914E-02 0.357109E-01 0.357109E-01 0.357109E-01	* * * * * * * * * * * * * * * * * * * *	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.233953E-04 0.233953E-04 0.488450E-03 0.522605E-03 0.522605E-03 0.522605E-03 0.522605E-03 0.522605E-03 0.52267E-02 0.302411E-01 0.581356E-02 0.5566622E-01 0.371583E-02 0.371583E-02 0.357250E-01 0.357250E-01 0.357250E-01		<pre>+Infinity +Infinity +Infinity +Infinity +Infinity +Infinity +Infinity +Infinity +Infinity 0.103461E+01 0.102999E+01 0.100427E+01 0.100184E+01 0.100192E+01 0.997118E+00 0.99852E+00 0.10036E+01 0.999514E+00 0.999781E+00 0.999781E+00</pre>	
0.5552176-00	,		'	0.0010001+00	'	< □ >	`		E り

_ _ _ _

Limit: p(5)	goes soft			
p(0, 5)^2/s(1,	2), M ^2,	Sub.term ^2,	M ^2/ Sub.term ^	2
0.869211E-03 ,	0.667915E-0	6 , 0.00000E+0	0, +Infinity	
0.688787E-03 ,	0.173590E-0	6 , 0.00000E+0	0, +Infinity	
0.421426E-03 ,	0.641739E-0	6 , 0.00000E+0	0, +Infinity	
0.387974E-03 ,	0.135239E-0	5 , 0.00000E+0	0, +Infinity	
0.336094E-03 ,	0.942989E-0	5 , 0.00000E+0	0, +Infinity	
0.185406E-03 ,	0.122405E-0	4 , 0.00000E+0	0, +Infinity	
0.137483E-03 ,	0.423950E-0	4 , 0.00000E+0	0, +Infinity	
0.103854E-03 ,	0.168496E-0	3 , 0.00000E+0	0, +Infinity	
0.637535E-04 ,	0.679828E-0	4 , 0.00000E+0	0, +Infinity	
0.376601E-04 ,	0.707965E-0	3 , 0.00000E+0	0, +Infinity	
0.191145E-04 ,	0.486171E-0	2 , 0.317993E-0	2 , 0.152887E+0	1
0.179479E-04 ,	0.696190E-0	3 , 0.479683E-0	3 , 0.145135E+0	1
0.129797E-04 ,	0.415716E-0	2 , 0.321313E-0	2 , 0.129380E+C	1
0.105788E-04 ,	0.125458E-0	1 , 0.125451E-0	1 , 0.100005E+0	1
0.774787E-05 ,	0.299737E-0	2 , 0.299749E-0	2 , 0.999957E+C	0
0.563720E-05 ,	0.574145E-0	2 , 0.574158E-0	2 , 0.999977E+0	0
0.343292E-05 ,	0.147020E+0	0 , 0.147017E+0	0, 0.100002E+C	1
0.909122E-06 ,	0.216597E+0	1 , 0.216591E+0	1 , 0.100003E+C	1

Further checks against MCFM: [Campbell, Ellis]

process	subprocesses			
Drell-Yan (W)	$qar{q}' o W^+ (o { extbf{e}^+} u_{ extbf{e}}) g$			
	$qg ightarrow W^+ (ightarrow e^+ u_e) q'$			
Drell-Yan (Z)	$qar{q} ightarrow Z(ightarrow { m e^+e^-})g$			
	$qg ightarrow Z(ightarrow { m e^+ e^-})q$			
Drell-Yan (Z+jet)	$qar{q} ightarrow Z(ightarrow e^+e^-)q'ar{q}'$			
	$qar{q} ightarrow Z(ightarrow { m e^+e^-})qar{q}$			
	$qar{q} ightarrow Z(ightarrow e^+e^-)gg$			
	$qar{g} ightarrow Z(ightarrow e^+e^-)qg$			
	$gar{g} ightarrow Z(ightarrow e^+e^-)qar{q}$			
top quark pair ($t\bar{t}$)	$q ar q o t (o b l^+ u_l) ar t (o ar b l^- ar u_l) g$			
	$qg ightarrow t(ightarrow bl^+ u_l) \overline{t} (ightarrow \overline{b} l^- \overline{ u}_l) q$			
	$gg ightarrow t(ightarrow bl^+ u_l) \overline{t} (ightarrow \overline{b} l^- \overline{ u}_l) g$			
t-channel single top	$gg ightarrow tar{b}qar{q}'$			
with massive <i>b</i> -quark	$qq^\prime ightarrow tar{b}q^\prime q^{\prime\prime}$			
	$qq^\prime ightarrow tar{b}q^\prime q^{\prime\prime}$			
	$qg ightarrow tar{b}q'g$			

Compare dipoles in single phase space points. No inconsistencies found.

・ロン ・回 と ・ ヨン・

æ

$$\Rightarrow \sigma^{NLO} = \int_{m+1} \left[\left(d\sigma^R \right) - \left(d\sigma^A \right) \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^A \right]$$

Fully automated integration over one-particle phase space would be more convient for user.

Phase space factorization:

$$d\phi(p_i, p_j, p_k; Q) = d\phi(\widetilde{p}_{ij}, \widetilde{p}_k; Q) \left[dp_i(\widetilde{p}_{ij}, \widetilde{p}_k) \right]$$

Integration over dipole:

w

$$\int \left[dp_i(\widetilde{p}_{ij}, \widetilde{p}_k) \right] \mathcal{D}_{ij,k}(p_1, ..., p_{m+1})$$

$$= -\mathcal{V}_{ij,k} \quad m < 1, ..., \widetilde{ij}, ..., \widetilde{k}, ..., m+1 | \frac{\mathbf{T}_k \cdot \mathbf{T}_{ij}}{\mathbf{T}_{ij}^2} | 1, ..., \widetilde{ij}, ..., \widetilde{k}, ..., m+1 >_m,$$
ith $\mathcal{V}_{ij,k} = \int \left[dp_i(\widetilde{p}_{ij}, \widetilde{p}_k) \right] \frac{1}{2p_i \cdot p_j} < \mathbf{V}_{ij,k} > \equiv \frac{\alpha_s}{2\pi} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu^2}{2\widetilde{p}_{ij}\widetilde{p}_k} \right)^{\epsilon} \mathcal{V}_{ij}(\epsilon)$

æ

Several non-trivial details:

 Integrated splitting function with initial state particles contains distributions ,e.g.

$$\begin{aligned} \mathcal{V}_{qg}(x;\epsilon) &= C_F\left[\left(\frac{2}{1-x}\ln\frac{1}{1-x}\right)_+ -\frac{3}{2}\left(\frac{1}{1-x}\right)_+ +\frac{2}{1-x}\ln(2-x)\right] \\ &+ \delta(1-x)\left[\mathcal{V}_{qg}(\epsilon) -\frac{3}{2}C_F\right] + \mathcal{O}(\epsilon) \end{aligned}$$

with $\int_0^1 dx \, g(x) \, [\, \mathcal{V}(x)\,]_+ \equiv \int_0^1 dx \, [g(x) - g(1)] \, \mathcal{V}(x)$.

- \Rightarrow Need to calculate $|\mathcal{M}|^2$ at *x* and at *x* = 1.
- For massive particles also $\delta(x_+ x)$ and $(..)_{x_+}$ contributions with $x_+ = 1 - 4\frac{m_t^2}{Q^2}$ and $\int_0^1 dx (f(x))_{x_+} g(x) \equiv \int_0^1 dx f(x) \Theta(x_+ - x) [g(x) - g(x_+)]$.

イロト イヨト イヨト イヨト

- Inclusion of α -parameter leads to nontrivial dependence on α [Nagy, Trocsanyi], [Campbell, Ellis]. New integrals required.
- Assume only one mass scale.
- Inclusion of pdfs.
- $\bullet\,$ Checks involve sampling over pdf \to more involved
- Results dependend on regularisation scheme
- ightarrow How should the implementation look like?

イロン イヨン イヨン -

크

- Inclusion of α -parameter leads to nontrivial dependence on α [Nagy, Trocsanyi], [Campbell, Ellis]. New integrals required.
- Assume only one mass scale.
- Inclusion of pdfs.
- $\bullet\,$ Checks involve sampling over pdf \to more involved
- Results dependend on regularisation scheme
- \rightarrow How should the implementation look like?

イロン イヨン イヨン -

Introduce only one new subroutine:

```
intdipoles(p,x,epssq,eps,finite)
```

Input: phase space point p = p(0:3, nexternal)momentum fraction x = x(2)

Output: Coefficients of $\frac{1}{\epsilon^2}$ - , $\frac{1}{\epsilon}$ -, and finite-terms.

Coefficients as 5-dimensional vectors:

1. $\delta(1-x)$ terms

2. terms regular in x

3. +-distribution terms (singular at x = 1) and for the massive case:

4. $\delta(x_+ - x)$ terms

5. x_+ -distribution terms

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Which parts should be expanded?

$$\mathcal{V}_{ij,k} = \int \left[dp_i(\widetilde{p}_{ij},\widetilde{p}_k) \right] \frac{1}{2p_i \cdot p_j} < \mathbf{V}_{ij,k} > \equiv \frac{\alpha_{\varsigma}}{2\pi} \underbrace{\frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu^2}{s_{ij,k}}\right)^{\epsilon}}_{=1 + \left(\log\left(\frac{4\pi\mu}{s_{ij,k}}\right) - \gamma\right)\epsilon + O(\epsilon^2)} \mathcal{V}_{ij}(\epsilon)$$

 \Rightarrow Expansion of the whole expression leads to artificial dependence of the finite terms on the renormalisation scale μ and has to be cancelled by virtual corrections

What is the 'best' expansion ?

イロン イヨン イヨン -

- At the moment the whole expression on the previous slide is expanded in the implementation, using *MS* scheme.
- Second implementation planned: Factorize out
 - 1(1)-operator: [Catani]

Write 1-loop matrixelement as:

$$\begin{split} |\mathcal{M}_{m}^{(1)}(\mu^{2};\{p\})\rangle_{\text{\tiny RS}} &= \textit{I}^{(1)}(\epsilon,\mu^{2};\{p\}) \ |\mathcal{M}_{m}^{(0)}(\mu^{2};\{p\})\rangle_{\text{\tiny RS}} + |\mathcal{M}_{m}^{(1)\,\text{fin}}(\mu^{2};\{p\})\rangle_{\text{\tiny RS}} \ . \end{split}$$
Singularities are in $\textit{I}^{(1)}$:

$$\boldsymbol{I}^{(1)}(\epsilon,\mu^2;\{\boldsymbol{p}\}) = \frac{1}{2} \frac{\boldsymbol{e}^{-\epsilon\psi(1)}}{\Gamma(1-\epsilon)} \sum_i \frac{1}{\boldsymbol{T}_i^2} \, \mathcal{V}_i^{\text{sing}}(\epsilon) \, \sum_{j\neq i} \boldsymbol{T}_i \cdot \boldsymbol{T}_j \, \left(\frac{\mu^2 \boldsymbol{e}^{-i\lambda_{ij}\pi}}{2\boldsymbol{p}_i \cdot \boldsymbol{p}_j}\right)^{\epsilon} \, ,$$

with $\psi(1) = -\gamma_E$, $e^{-i\lambda_{ij}\pi}$ unitarity phase.

$$\mathcal{V}_i^{\text{sing}}(\epsilon) = \mathbf{T}_i^2 \frac{1}{\epsilon^2} + \gamma_i \frac{1}{\epsilon} ,$$

$$\mathbf{T}_i^2 = C_F, C_A. \quad \gamma_i = \frac{3}{2} C_F, \frac{11}{6} C_A - \frac{2}{3} T_R N_f.$$

Advantages when using $I^{(1)}$ -operator:

- Clear and well defined way used by many people
- No need to calculate singular terms numerically, because a priori clear how they look like

Disadvantage:

• Generalization for massive case gets slightly more complicated [Catani, Dittmaier, Trocsanyi]

$$\begin{split} \boldsymbol{I}_{m}^{\text{RS}}(\epsilon,\mu^{2};\{\boldsymbol{p}_{i},m_{i}\}) &= \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left\{ \boldsymbol{q} \, \frac{1}{2} \left(\frac{\beta_{0}}{\epsilon} - \tilde{\beta}_{0}^{\text{RS}} \right) \right. \\ &+ \sum_{\substack{j,k=1\\k\neq j}}^{m} \boldsymbol{T}_{j} \cdot \boldsymbol{T}_{k} \left(\frac{\mu^{2}}{|\boldsymbol{s}_{jk}|} \right)^{\epsilon} \left[\mathcal{V}_{jk}^{(\text{cc})}(\boldsymbol{s}_{jk};m_{j},m_{k};\epsilon) + \frac{1}{v_{jk}} \left(\frac{1}{\epsilon} \,\mathrm{i}\pi \, - \frac{\pi^{2}}{2} \right) \Theta(\boldsymbol{s}_{jk}) \right] \\ &- \sum_{j=1}^{m} \Gamma_{j}^{\text{RS}}(\mu,m_{j};\epsilon) \right\}. \end{split}$$

 β_0 is the first coefficient of the QCD beta function:

$$eta_0 = rac{11}{3} \, C_{\!A} - rac{4}{3} \, T_{\!R} (N_{\!f} + N_{\!F}) \, ,$$

 $\mathcal{V}_{ik}^{(cc)}$ controls colour correlation. For non-vanishing masses:

$$\mathcal{V}_{jk}^{(\mathrm{cc})}(\mathbf{s}_{jk}; m_j, m_k; \epsilon) = \frac{1}{2\epsilon} \frac{1}{v_{jk}} \ln \frac{1 - v_{jk}}{1 + v_{jk}} - \frac{1}{4} \left(\ln^2 \frac{m_j^2}{|\mathbf{s}_{jk}|} + \ln^2 \frac{m_k^2}{|\mathbf{s}_{jk}|} \right) - \frac{\pi^2}{6},$$

for one or two vanishing masses:

$$\begin{split} \mathcal{V}_{jk}^{(\mathrm{cc})}(s_{jk};m_{j},0;\epsilon) &= \frac{1}{2\epsilon^{2}} + \frac{1}{2\epsilon} \ln \frac{m_{j}^{2}}{|s_{jk}|} - \frac{1}{4} \ln^{2} \frac{m_{j}^{2}}{|s_{jk}|} - \frac{\pi^{2}}{12} \,, \\ \mathcal{V}_{jk}^{(\mathrm{cc})}(s_{jk};0,0;\epsilon) &= \frac{1}{\epsilon^{2}} \,. \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 Γ_j^{RS} depend on parton flavour and masses. For massive quarks:

$$\Gamma_q(\mu, m_q; \epsilon) = \mathbf{T}_q^2 \left(\frac{1}{\epsilon} - \ln \frac{m_q^2}{\mu^2} - 2 \right) + \gamma_q \ln \frac{m_q^2}{\mu^2} = C_F \left[\frac{1}{\epsilon} + \frac{1}{2} \ln \frac{m_q^2}{\mu^2} - 2 \right] \,.$$

For gluons and massless quarks:

$$\begin{split} \Gamma_g^{\text{RS}}(\mu, m_{\{F\}}; \epsilon) &= \frac{1}{\epsilon} \gamma_g - \tilde{\gamma}_g^{\text{RS}} - \frac{2}{3} T_R \sum_{F=1}^{N_F} \ln \frac{m_F^2}{\mu^2} , \\ \Gamma_g^{\text{RS}}(\mu, 0; \epsilon) &= \frac{1}{\epsilon} \gamma_g - \tilde{\gamma}_g^{\text{RS}} , \end{split}$$

 $\tilde{\gamma}^{\scriptscriptstyle\rm RS}_j$ are contributions depending on regularization scheme:

$$\tilde{\gamma}_{j}^{\mathrm{CDR}} = 0, \qquad \tilde{\gamma}_{j=q,\bar{q}}^{\mathrm{DR}} = \frac{1}{2} C_{F}, \qquad \tilde{\gamma}_{j=g}^{\mathrm{DR}} = \frac{1}{6} C_{A}.$$

Regularization scheme dependence:

- Sum (real emission + virtual corrections) independent of regularization scheme
- But several parts depend on regularization scheme.

MadGraph: external particles 4-dimensional, integration over 1-particle phase space *d*-dimensional

 \rightarrow 't Hooft-Veltman scheme (tHV) (similar to conventional dimensional regularization (CDR)).

On the other hand dimensional reduction (DR) often used.

 \Rightarrow Differences in finite terms. \rightarrow Both methods are implemented.

イロン イヨン イヨン イヨン

Phase space restriction:

Integrated dipoles depend on $\alpha\mbox{-} {\rm parameter},$ but final result must be independent.

$$\int_{n+1} (d\sigma^R - d\sigma^A) + \int_n (\text{finite parts of int. dip.}) = \text{const}$$

 \Rightarrow Must be checked for all possible dipoles.

What about the pdfs?

 Initial state emitter/spectator involve integration over momentum fraction. → Good point to introduce pdfs.

But maybe user wants to use his/her own pdfs ?! \Rightarrow GETPDF(x1, x2, u, ubar, PDF) 'Dummy' routine GETPDF can contain link to MadEvent pdfs or user can link his/her own pdfs.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

What about the pdfs?

 Initial state emitter/spectator involve integration over momentum fraction. → Good point to introduce pdfs.

But maybe user wants to use his/her own pdfs ?!

 \Rightarrow GETPDF(x1, x2, u, ubar, PDF) 'Dummy' routine GETPDF can contain link to MadEvent pdfs or user can link his/her own pdfs.

イロン イヨン イヨン イヨン

What about the pdfs?

 Initial state emitter/spectator involve integration over momentum fraction. → Good point to introduce pdfs.

But maybe user wants to use his/her own pdfs ?!

 \Rightarrow GETPDF(x1, x2, u, ubar, PDF) 'Dummy' routine GETPDF can contain link to MadEvent pdfs or user can link his/her own pdfs.

イロン イヨン イヨン

To Do:

- Finish checking of alpha dependence
- Implementation of the I⁽¹⁾-operator
- Inclusion of pdf's
- Check the implementation of singular/finite terms

イロン イヨン イヨン イヨン

Conclusions

- Dipole subtraction formalism ensures finiteness of real emission terms and virtual corrections.
- MadDipole: Fully automated implementation of dipole formalism.
- Numerous checks to ensure correctness.
- Automated integration over one particle phase space desirable.
 - \rightarrow In progress.
- Principle implementation done. Needs futher testing/improvements.

< ロ > < 同 > < 臣 > < 臣 > -