

Fittino: Reverse engineering of supersymmetry How to get the SUSY blueprint

Peter Wienemann University of Bonn

Work done in collaboration with P. Bechtle, K.Desch and M. Uhlenbrock

IPPP Seminar, Durham, UK

Inverse modelling

Often: What you want ≠ what you get

Also often: Problems "easy" to solve in one direction, very difficult in opposite direction (one-way functions)

For many problems in science and engineering, getting what you want requires to follow difficult direction

Inverse modelling: observations \rightarrow model parameters

Examples:

- Reverse engineering Technical device/software \rightarrow blueprint
- Scattering experiments Angles, energies, particle types \rightarrow particle/interaction properties
- Remote sensing E. g. multiple 1D/2D meas. \rightarrow 3D parameter map

Inverse problems are often "ill-posed" (Hadamard)

Experimentalists provide:

 σ , BR, asymmetries, ...

Theorists provide:

mapping: model parameters \rightarrow observables for various theories

Need procedure to connect measurements to theory parameters for given theoretical framework

Supersymmetry (SUSY)

- Attractive candidate for extended SM of particle physics
- Remedies various shortcomings of SM
 - Hierarchy problem
 - → No high-scale unification of gauge couplings
 - → Lack of dark matter candidate
- SUSY as solution to SM problems only satisfactory if SUSY shows up at the TeV scale
- \rightarrow Exciting prospects for LHC, ILC
- \rightarrow Should get prepared for inverse modelling of supersymmetry

Inverse modelling of supersymmetry

Experiment:

Theory:

Questions to answer from measurements:

- What is the underlying (SUSY) model?
 → basically trial and error
- What are the values of its parameters?
 → needs sophisticated techniques

Inverse modelling of supersymmetry

At tree level, some sectors (e.g. chargino, chargino+neutralino) can be treated separately.

At loop level, in principle every observable depends on every parameter.

Complicated mutual dependence of the various parameters.

Approximate picture (not quite correct since non-linear mapping):

Iterative approach

Programs

Several programs available which allow reconstruction of SUSY parameters from measurements:

- Sfitter (R. Lafaye, T. Plehn, M. Rauch, D. Zerwas)
- Fittino (P. Bechtle, K. Desch, M. Uhlenbrock, P. W.) http://www-flc.desy.de/fittino
- Gfitter (H. Flächer, M. Goebel, J. Haller, A. Höcker, K. Mönig, J. Stelzer) http://gfitter.desy.de (currently only SM and 2HDM)

- C++ package reconstructing SUSY parameters through χ^2 minimisation (using full correlation information)
- Currently supported SUSY models: mSUGRA, GMSB, AMSB, MSSM24, NMSSM
- χ^2 minimisation using MINUIT or simulated annealing
- Calculation of likelihood maps using Markov chain Monte Carlo technique
- Theory predictions from SPheno (W. Porod) and Mastercode (Buchmüller *et al.*)

Simulated annealing

Simulated annealing in action

Markov chain = sequence of points x_i (i=1,...n) in parameter space with associated likelihood

New point x_{n+1} randomly chosen according to proposal PDF is added to chain if $\mathcal{L}(x_{n+1}) > \mathcal{L}(x_n)$

Otherwise it is accepted with probability $\mathcal{L}(x_{n+1})/\mathcal{L}(x_n)$

If proposal PDF is chosen properly, sampling density of points x_i in Markov chain proportional to likelihood

History

Fittino originally developed to estimate the potential of combined LHC and ILC measurements (Eur. Phys. J. **C46**, 533-544, 2006)

Available LE measurements

Wealth of "low" energy (LE) measurements from past and present experiments:

- LEP, SLC
- B factories
- WMAP
- ...

They put constraints on SUSY

observable	meas. value	$\operatorname{constraint}$	theo. uncert.
$\alpha_{\rm em}$	127.925	± 0.016	
$\alpha_{\rm S}$	0.1176	± 0.0020	
$G_F (\text{GeV}^{-2})$	1.16637×10^{-5}	\pm 0.00001 $\times 10^{-5}$	
m_Z (GeV)	91.1875	\pm 0.0021	
m_W (GeV)	80.399	± 0.025	± 0.010
m_c (GeV)	1.27	± 0.11	
m_b (GeV)	4.20	± 0.17	
m_t (GeV)	172.4	± 1.2	
m_{τ} (GeV)	1.77684	± 0.00017	
m_h (GeV)	> 114.4		± 3.0
Γ_Z (MeV)	2495.2	± 2.3	± 1.0
Δa_{μ}	30.2×10^{-10}	\pm 8.8 $\times 10^{-10}$	\pm 2.0 $\times 10^{-10}$
σ_{had}^0 (nb)	41.540	± 0.037	
R_{ℓ}	20.767	± 0.025	
R_b	0.21629	± 0.00066	
R_c	0.1721	± 0.003	
A_{FB}^{ℓ}	0.01714	± 0.00095	
A^b_{FB}	0.0992	± 0.0016	
A_{FB}^{c}	0.0707	± 0.0035	
$A_{\ell}(SLD)$	0.1513	\pm 0.0021	
$A_{\ell}(P_{\tau})$	0.1465	± 0.0032	
A_b	0.923	± 0.020	
A_c	0.670	± 0.027	
$sin^2 \theta_W^{\ell}(Q_{fb})$	0.2324	\pm 0.0012	
Ωh^2	0.1099	± 0.0062	± 0.012
$BR(B_d \rightarrow \mu^+ \mu^-)$		$< 2.3 \times 10^{-8}$	\pm 0.01×10 ⁻⁹
$BR(B_s \rightarrow \mu^+ \mu^-)$		$< 4.7 \times 10^{-8}$	$\pm 0.02 \times 10^{-8}$
$R(b \rightarrow s\gamma)$	1.117	\pm 0.076 \pm 0.082	± 0.050
$R(B \rightarrow \tau \nu)$	1.15	± 0.40	
$R(B \rightarrow X_s \ell \ell)$	0.99	± 0.32	
$R(K \rightarrow \mu\nu)$	1.008	± 0.014	
$R(K \rightarrow \pi \nu \overline{\nu})$		< 4.5	
$R(\Delta m_{B_s})$	1.11	± 0.01	± 0.32
$R(\Delta m_{B_s})/R(\Delta m_{B_d})$	1.09	± 0.01	± 0.16
$R(\Delta \epsilon_K)$	0.92	± 0.14	

SM+mSUGRA fit to LE measurements

Fit of α_{em} , α_{s} , G_{F} , m_{Z} , m_{b} , m_{t} , m_{τ} and mSUGRA parameters to LE measurements:

Best agreement for:	Parameter	Value	Uncertainty
	tan β	12.4	4.8
	$A_0^{}(GeV)$	337	544
	M ₀ (GeV)	71	18
	M _{1/2} (GeV)	323	62

Uncertainties obtained from toy fits to observables smeared around nominal values for best fit parameters

SM+mSUGRA fit to LE measurements

Parameter distributions for toy fits:

Parameter distributions for toy fits:

Distributions for toy fits:

Comparison: ATLAS discovery potential ↔ mSUGRA fit results

Predicted mass spectrum from mSUGRA fit

Parameter distributions for toy fits with observables smeared around nominal values for parameters of best fit:

SM+GMSB fit to LE measurements

χ^2 distribution for toy fits:

Predicted mass spectrum from SM+GMSB fit

Comparison: mSUGRA ↔ GMSB spectrum

mSUGRA

Peter Wienemann: Reverse engineering of SUSY

GMSB

LHC "measurements"

LHC is just around the corner and will hopefully shower us with exciting new measurements.

Case study for SPS1a assuming 1 fb⁻¹, 10 fb⁻¹ and 300 fb⁻¹:

Observable	Nominal	ul Uncertainty							
	Value	$1 {\rm ~fb}^{-1}$	$10 {\rm ~fb^{-1}}$	$300 \ {\rm fb}^{-1}$	LES_1	LES10,300	JES_1	$JES_{10,300}$	syst.
m_h	109.1		1.4	0.1		0.1			ar ar sh
m_t	170.9	1.1^{*}	0.05	0.01			1.5^{*}	1.0	
$m_{\tilde{\chi}_{1}^{\pm}}$	179.9			11.4				1.8	
$m_{\tilde{\ell}_L} - m_{\tilde{\chi}_1^0}$	105.4			1.7		0.1			6.0
$m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$	510.2		13.7	2.5				5.1	10.0
$m_{\bar{q}_R} - m_{\bar{\chi}_1^0}$	454.0	19.6	6.2	1.1			22.7	4.5	10.0
$\langle m_{\bar{g}} - m_{\bar{b}_{1,2}} \rangle$	522.6	2	5.4					5.2	
$m_{\bar{g}} - m_{\bar{b}_1}$	89.0			1.5				0.9	
$m_{\tilde{g}} - m_{\tilde{b}_2}$	56.7			2.5				0.6	
$m_{\ell\ell}^{\max} = \tilde{\epsilon}_1(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R})$	80.2	1.7	0.5	0.03	0.16	0.08			
$m_{\ell\ell}^{\max} = \epsilon_1(m_{\bar{\chi}_1^0}, m_{\bar{\chi}_4^0}, m_{\bar{\ell}_L})$	279.1		12.6	2.3		0.28			
$m_{\tau\tau}^{\max} = \epsilon_1(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\tau}_1})$	83.2	12.6	4.0	0.73			4.2	0.8	5.7
$m_{\ell\ell q}^{\max} = \epsilon_1(m_{\tilde{\chi}_1^0}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	454.3	13.9	4.2	1.4			22.7	4.5	
$m_{\ell q}^{\text{low}} = \epsilon_1(m_{\tilde{\ell}_R}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	324.2	7.6	3.5	0.9			16.2	3.2	
$m_{\ell q}^{\text{high}} = \epsilon_2(m_{\bar{\chi}_1^0}, m_{\bar{\chi}_2^0}, m_{\bar{\ell}_R}, m_{\bar{q}_L})$	398.3	5.2	4.5	1.0			19.9	4.0	
$m_{\ell\ell q}^{\text{thres}} = \epsilon_3(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R}, m_{\tilde{q}_L})$	216.2	26.5	4.8	1.6			10.8	2.2	
$m_{\ell\ell b}^{\text{thres}} = \epsilon_3(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_B}, m_{\tilde{b}_1})$	196.4		19.7	3.6				2.0	
$m_{tb}^{w} = \epsilon_4(m_t, m_{\bar{t}_1}, m_{\bar{\chi}_i^{\pm}}, m_{\bar{g}}, m_{\bar{b}_i})$	360.9	43.0	13.6	2.5			18.0	3.6	
$\frac{\operatorname{BR}(\bar{\chi}_2^0 \to \bar{\ell}\ell) \times \operatorname{BR}(\bar{\ell} \to \bar{\chi}_1^0 \ell)'}{\operatorname{BR}(\bar{\chi}_2^0 \to \bar{\tau}_1 \tau) \times \operatorname{BR}(\bar{\tau}_1 \to \bar{\chi}_1^0 \tau)}$	0.08	0.009	0.003	0.001					0.008
$\frac{\operatorname{BR}(\bar{g} \to \bar{b}_2 b) \times \operatorname{BR}(\bar{b}_2 \to \bar{\chi}_2^0 b)}{\operatorname{BR}(\bar{g} \to \bar{b}_1 b) \times \operatorname{BR}(\bar{b}_1 \to \bar{\chi}_2^0 b)}$	0.16			0.078					

Mass reconstruction at LHC (RPC SUSY)

Likelihood maps for mSUGRA parameters, sign(μ) fixed to +

Plots show contours of $2\ln(\mathcal{L}_{\max}/\mathcal{L})$

Note different scales!

SPS1a: tan β = 10, A₀ = -100 GeV

Caveat

Markov chains need sufficient number of iterations to settle down, i. e. results become independent of start values

mSUGRA parameter distributions for toy fits:

mSUGRA parameter distributions for toy fits:

μ>0 vs. μ<0 from LHC "measurements"

Performed two fits (with μ >0 and μ <0) for every toy data set smeared around best fit values and compared χ^2 values

SPS1a: μ>0

Combination LHC+LE

tan β	Luminosity	Uncertainty LHC	Uncertainty LHC+LE
	1 fb-1	3.7 (41 %)	2.5 (25 %)
	10 fb-1	0.8 (8 %)	0.8 (8 %)
	300 fb-1	0.4 (4 %)	0.3 (3 %)
A ₀ (GeV)	Luminosity	Uncertainty LHC	Uncertainty LHC+LE
	1 fb-1	742 (742 %)	169 (169 %)
	10 fb-1	53 (53 %)	48 (48 %)
	300 fb-1	11 (11 %)	12 (12 %)
M ₀ (GeV)	Luminosity	Uncertainty LHC	Uncertainty LHC+LE
	1 fb-1	4.2 (4.2 %)	3.3 (3.3 %)
	10 fb-1	2.1 (2.1 %)	1.9 (1.9 %)
	300 fb-1	0.39 (0.4 %)	0.44 (0.4 %)
M _{1/2} (GeV)	Luminosity	Uncertainty LHC	Uncertainty LHC+LE
	1 fb-1	6.7 (2.7 %)	4.9 (2.0 %)
	10 fb-1	1.2 (0.5 %)	1.1 (0.4 %)
	300 fb-1	0.30 (0.1 %)	0.32 (0.1 %)

LE observables set to nominal SPS1a values for this combination

μ>0 vs. μ<0 from LHC+LE

LHC+LE

So far we always assumed certain SUSY breaking mechanism Can we also fit more general models to LHC+LE observables? YES, WE CAN!

Assumptions:

- No CP violation (all phases = 0)
- No mixing between generations
- No mixing within the first two generations
- Universality of same-type sfermion mass parameters in first two generations

\rightarrow MSSM18

Excerpts from toy fit parameter distributions...

Excerpts from toy fit parameter distributions...

Excerpts from toy fit parameter distributions...

Relic density

Summary

- Discovery of new physics at the LHC might be the "easy" part (if Nature is not too nasty)
- Pinning down the underlying model might be more demanding
- LE measurements favour SUSY masses ≤ 1 TeV
- LE measurements might still provide valuable constraints for SUSY in the first phase of the LHC
- LHC results pretty powerful in constrained SUSY models
- LHC results might exhibit ambiguities in more general SUSY models \rightarrow ILC
- Might, might, might ... LHC will hopefully end speculations soon!