### SHERPA: Overview

#### Marek Schönherr<sup>1</sup>

Institut für Kern- und Teilchenphysik Technische Universität Dresden

Institute for Particle Physics Phenomenology Durham University

#### YETI 2009 - 12/01/2009







1 for SHERPA: J. Archibald, T. Gleisberg, S. Höche, F. Krauss, MS, S. Schumann, 🖪 Siegert; J. Winter 🛛 🚊 🔊 🤉 🔇

Marek Schönherr SHERPA: Overview

### Contents

1 Physics of SHERPA Physics Modules

2 Running SHERPA Event Generation

#### **3** Conclusion

(中) (聞) (言) (言) 言 の()

IPPP Durham, IKTP TU Dresden

Marek Schönherr SHERPA: Overview

#### arXiv:0811.4622, JHEP 0402 (2004) 056

- Initial state parton shower (QCD)
- Underlying event
- Signal process
- Final state parton shower (QCD)
- Fragmentation
- Hadron decays
- QED radiation

SHERPA is the framework steering these event phases.



### **Physics Modules**

- physics version SHERPA-1.1 released in April '08
- current bugfix version SHERPA-1.1.3

#### Physics modules

- AMEGIC++: tree level ME generator
- APACIC++: parton shower
- AMISIC++: multiple parton interactions
- AHADIC++: cluster fragmentation
- HADRONS++: hadron and au decay module
- PHOTONS++: higher order QED corrections

0000

## CKKW ME-PS merging



- + Exact fixed order
- + All interference terms
- Calculable only for low FS multiplicities (n < 6-8)



+ Resum all (next-to) leading logs to all orders Interference effects only through angular ordering

#### Combine advantages of both approaches

- Good description of hard emission (ME)
- Correct intrajet evolution (PS)

#### JHEP 0111 (2001) 063, JHEP 0208 (2002) 015

### Strategy

- Separate phase space:  $\rightarrow$  ME region  $k_{\perp} > Q_{cut}$   $\rightarrow$  PS region  $k_{\perp} < Q_{cut}$ (for  $n_{Jet} \le N$ )
- Select final state multiplicity and kinematics according to σ<sub>i</sub>
- Create shower history by backwards clustering (in k<sub>⊥</sub>) and identify 2 → 2 core process
- Reweight ME to obtain exclusive sample
- Start shower at hard scale and veto emission above  $Q_{cut}$



## Soft Physics

• AMISIC++

 $\rightarrow$  underlying event on basis of the Lund model

#### hep-ph/0601012

 $\rightarrow$  not tuned with new hadronisation

- AHADIC++
  - $\rightarrow$  modified cluster hadronisation

in preparation

• HADRONS++

 $\rightarrow$  extensive hadron and  $\tau$  decay library

Krauss, Laubrich, Siegert: in preparation

• PHOTONS++

 $\rightarrow$  higher order QED corrections to hadron decays

JHEP 0812 (2008) 018





#### Installation, Documentation

- homepage http://sherpa-mc.de
- current version http://www.hepforge.org/archive/sherpa/Sherpa-1.1.3.tar.gz
- manual

http://www.hepforge.org/archive/sherpa/howto-1.1.3.pdf

#### Steering

• input card Run.dat holds all steering parameters, can be back-uped in default locations, most parameters have defaults

< □ > < A > >

- parameter override on command line possible
- all mass units in GeV

#### Run.dat

```
(run) {
  EVENTS = 1000
  OUTPUT = 2
  HEPMC2_GENEVENT_OUTPUT = event_file
}(run)
```

```
\rightarrow sets global run parameters
```

э

Image: A math a math

```
Physics of SHERPA
0000
Event Generation
```

#### Run.dat - necessary components

```
(beam){
                                          \rightarrow beam particle specification
  BEAM_1 = 2212
  BEAM ENERGY 1 = 980.
  BEAM 2 = -2212
  BEAM_ENERGY_2 = 980.
}(beam)
(processes){
                                          \rightarrow process declaration
  Process : 93 \ 93 \ -> \ 11 \ -11 \ 93\{1\}
                                          use of particle containers, e.g.
  Order electroweak : 2
                                          93 - jets (massless q, \bar{q}, g)
  End process
}(processes)
(selector){
  JetFinder sqr(20/E_CMS) 1.
                                          \rightarrow matrix element cuts
  Mass 11 -11 66 116
}(selector)
```

Image: A match a ma

| Physics of SHERPA<br>0000 | Running SHERPA<br>00●000 | Conclusion |
|---------------------------|--------------------------|------------|
| Event Generation          |                          |            |

#### Run.dat – further settings

```
(me){
  SCALE SCHEME
                  = CKKW
  KFACTOR_SCHEME = 1
  SUDAKOV WEIGHT = 1
}(me)
(shower){
  FSR_SHOWER = 1
  ISR_SHOWER = 1
}(shower)
(model){
  MODEL = SM
}(model)
(fragmentation){
  FRAGMENTATION = Abadic
  DECAYMODEL.
                = Hadrons
  YFS_MODE
                = 2
}(fragmentation)
```

 $\rightarrow$  set ME scales, CKKW parameters

 $\rightarrow$  set shower parameters

 $\rightarrow$  set model for ME calculation (SM, MSSM, THDM, ADD, ...)

 $\rightarrow$  hadronisation model, decay model, soft QED settings

I ∃ ►

### Run.dat - UE settings

```
(mi){
 MI_HANDLER
                                     ! Amisic / None
               = None
 CREATE GRID 93 93 -> 93 93
                                     ! processes to generate
 PS_ERROR
                    = 1.0e-2
                                     ! error for integration
 MI SCALE SCHEME
                    = G MEAN PT2
                                     ! Scale scheme
 MI_K_FACTOR_SCHEME = 1
                                     ! K-factor scheme
 REGULATE XS
                     = 0
                                     ! regulate cross section
 XS REGULATOR
                     = QCD Trivial
                                     ! regulation scheme
 XS_REGULATION
                     = 2.225
                                       regulation parameter
 SCALE MIN
                     = 2.225
                                     ! minimum scale
 JET VETO
                     = 1
                                     ! apply jet veto
 RESCALE_EXPONENT
                     = 0.25
                                     ! rescaling exponent
 REFERENCE SCALE
                     = 1800.0
                                     ! reference energy scale
 PROFILE_FUNCTION
                     = Double_Gaussian ! hadron profile function
 PROFILE PARAMETERS = 1.0 \ 0.5 \ 0.5
                                     ! size (must be 1). coresize.
                                     ! matter fraction
```

}(mi)

э

Image: A match a ma

# Running the generator: **3-step strategy**

#### First run: Generating the ME libraries

\$ Sherpa OUTPUT=2
....
Single\_Process::Tests for 2\_2\_\_d\_db\_e-\_e+
Prepare gauge test and init helicity amplitudes. This may take some time.
In String\_Handler::Complete : this may take some time....
Single\_Process::CheckLibraries : Looking for a suitable library. This may take some time.
Library\_Loader::LoadLibrary(): Failed to load library 'libProc\_P2\_2\_2\_6\_14\_16\_5\_0.so'.
Single\_Process::WriteLibrary :
Library for 2\_2\_d\_db\_e-\_\_e+ has been written, name is P2\_2\_2\_6\_14\_16\_5\_1
....
Amegic::InitializeProcesses :
Some new libraries were created and have to be compiled and linked.
Type '...makelibs' in '/home/marek/work/YETI/z+jets/merging/max1jet' and rerun.

#### Compiling the libraries

- Written out in C++, using autotools for compilation setup
- Compile using ./makelibs

| Physics | s of Sherpa                                                                                                                                  | Running Sherpa                                                                                                                                                                                                                                                                    |                                  | Conclusion                                                                                  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|
| Event   | Generation                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                  |                                                                                             |
| Rui     | nning the g                                                                                                                                  | generator: <b>3-step strateg</b>                                                                                                                                                                                                                                                  | у                                |                                                                                             |
|         | Second run:<br>\$ Sherpa EVENTS=100                                                                                                          | Integration, event generation                                                                                                                                                                                                                                                     |                                  |                                                                                             |
|         | <pre>All_Processes::Calc Process_Group::Calc Starting the calcul 29.4538 pb +- ( 1.0 29.8696 pb +- ( 0.0 2_3_jjee+ Store result : xs f</pre> | ulateTotalXSec for 2_3jjee+j<br>ulateTotalXSec(./Results)<br>ation. Lean back and enjoy<br>6829 pb = 3.627 % ) 5000 ( 45.5 % )<br>743656 pb = 0.248967 % ) 130000 ( 69.7 % )<br>j : 29.8696 pb +/- 0.248967 %, exp. eff: 2.53925<br>or 2_3jj_ee+j : 29.8696 pb +/- 0.24896<br>-06 | Process integration<br>%.<br>7%, |                                                                                             |
|         | SHERPA generates                                                                                                                             | events with the following structure                                                                                                                                                                                                                                               |                                  |                                                                                             |
|         | Perturbative<br>Perturbative<br>Perturbative<br>Perturbative<br>Hadronization<br>Hadronization<br>Hadronization                              | <pre>Signal_Processes:Amegic Hard_Decays: Jet_Evolution:Apacic Multiple_Interactions:None Beam_Remants Hadronization: Ahadic Hadron_Decays</pre>                                                                                                                                  | Active modules                   |                                                                                             |
|         | Event 1000 ( 20 s<br>In Event_Handler::F                                                                                                     | <pre>celapsed / 0 s left / 20 s total ) inish : Summarizing the run may take some time.</pre>                                                                                                                                                                                     | Event generation                 |                                                                                             |
|         | <br>Time: 32.89 s (cloc<br>(User: 27.49 s ,Sy                                                                                                | ks=3289) on Sat Jan 10 14:32:43 2009<br>stem: 0.39 s ,Children User: 0 s ,Children Syste                                                                                                                                                                                          | m:≻o) @ > < ≧ > < ≧ >            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Marek   | Schönherr                                                                                                                                    |                                                                                                                                                                                                                                                                                   | IPPP Durham, IKTP                | TU Dresden                                                                                  |

### Conclusion

- Complete hadron level event generator for ee, e\gamma,  $\gamma\gamma$ , ep, pp collisions
- Automated ME-PS merging with NLL accuracy

#### Immediate future – SHERPA-1.2

- New physics modules: COMIX – new ME-generator for large FS multiplicities CSSHOWER++ – new PS-generator based on Catani-Seymour dipole splitting functions
- Merging between all combinations of shower and matrix element generators
- Automated generation of CS subtraction terms

### http://sherpa-mc.de

• Downloads, announcement mailing list, documentation