

- Extended Introduction to CMS
- Magnet
- Tracking System
- Electromagnetic Calorimeter
 - **Hadronic Calorimeter**
- Muon System
- Trigger & Data Acquisition
- Summary

Ken Bell – Rutherford Appleton Laboratory

- General Purpose Detector at LHC: 14TeV pp, 40MHz
- Standard Model Higgs Boson
 - ≻85 160 GeV: Two photon channel
 - > 130 700 GeV: Four lepton channel
 - ➤ 700 GeV 1 TeV: 𝔅 jj and 𝔅 ljj channels
 - > 5 σ discovery possible from LEP2 limit to 1 TeV (10⁵pb⁻¹)
- SUSY
 - MSSM Higgs: Two photon and four lepton channels
 Tau and *b* tagging also important
 Model-independent searches: high E_t Jets and missing E_t
- Heavy Ion Physics
- SM Higgs Boson used as performance benchmark

- 1) Efficient, hermetic muon triggering and identification
 - > Low contamination & good momentum resolution over $|\eta| < 2.5$
 - Di-muon mass resolution <1% at 100 GeV/c²
 - Charge determination for muons with momentum ~1 TeV/c
 - ≻ Δp_T/p_T ~5%
- 2) High-granularity, hermetic electromagnetic calorimetry
 - > Coverage over $|\eta| < 3.0$
 - > Good energy resolution, ~0.5% at E_T ~50 GeV
 - Di-photon mass resolution <1% at 100 GeV/c²
- 3) Powerful central tracking system
 - Good charged particle momentum resolution and reconstruction efficiency
 - > Good reconstruction of secondary vertices (for τ and *b*-jets)
- 4) Hermetic combined calorimetry system
 - > Coverage over $|\eta| < 5.0$
 - Good resolution for detecting and measuring "missing" E_T and for reconstructing the mass of jet-pairs

Criterion 1 drives overall physical design of the detector through magnet design Criteria 2&3 need special technologies to cope with challenging LHC environment

Engineering Solutions

• Single high field (4T) solenoid

- Largest practicably constructible
- Compact design, but large enough BL²
- Contains all barrel tracking and calorimetry
- Therefore solenoid can be thick
- Flux return yoke accurately constructed and instrumented for muon detection with redundant measuring systems
 - 4 stations 32 *r*-φ measurements (barrel DT)
 & 24 *r*-z measurements (endcap CSC)
 - Additional trigger from RPC layers
 - Sophisticated alignment system
- High-granularity electromagnetic calorimeter containing ~75k PbWO₄ crystals
 - > >22X₀ in depth
- Tracking using 3-layer Si-pixel (66M channel) surrounded by 10-layer Si-strip (10M chans.) (210m² silicon: ~tennis court)
- Hermetic hadron calorimeter
 - Sampling type, brass/scintillator layers

Assembly Concept

- Start commissioning
- > Test of coil & " ϕ -slice" of CMS

Close detector and finish commissioning

Performance Overview

Ken Bell

1984.	Lausanne: Workshop on installing Large Hadron Collider in LEP tunnel		
1987.	CERN's long-range planning committee recommends		
	Large Hadron Collider as right choice for CERN's future		
1989.	LEP Collider starts operation		
1990.	Aachen: ECFA LHC Workshop		
1992.	Evian les Bains: General Meeting on LHC Physics and Detectors		
1993.	Letters of Intent for LHC detectors submitted		
1994.	LHC approved		
1995.	CMS Technical Proposal approved		
1998.	LHC Construction begins		
2000.	CMS assembly begins on the surface; LEP Collider closes		
2004.	CMS experimental cavern completed		
2008.	10-Sep: First circulating beams		
	Oct/Nov: CMS: 4-week, 300M cosmic-ray, data-taking at 3.8T:"CRAFT"		
2009.	First proton-proton Collisions		
2012.	Reach design luminosity		
2013.	?? Upgrade LHC Phase 1: increase design luminosity by factor 2-4		
2017.	?? Upgrade LHC Phase 2: increase design luminosity by factor ~10		

CMS Collaboration

	Number of Laboratories
Member States	59
Non-Member States	67
USA	49
Total	175

	Nr Scientists & Engineers
Member States	1084
Non-Member States	503
USA	723
Total	2310

38 Countries175 Institutions2310 Scientists and Engineers

UK groups in CMS Detector

- UK is ~5% of CMS Collaboration
- Bristol University
 - ECAL & Global Calorimeter Trigger (GCT)
- Brunel University
 - Strip Tracker & ECAL
- Imperial College
 - Strip Tracker, ECAL & GCT
 - CMS Spokesperson (T.S.Virdee)
- Rutherford Appleton Laboratory
 - Strip Tracker & ECAL
 - Electronic & Mechanical Engineering Support
- Principal UK Strip Tracker involvement: Electronics & DAQ
- Principal UK ECAL involvement: Endcaps

- Strong field (4T) with very large BL²
- Central tracking and calorimetry inside solenoid
- World's largest SC solenoid
 12.5m long, 6.3m diameter
 Many novel engineering aspects
 NbTi conductor embedded in pure Al
 Cold mass: 220 t
 Nominal current: 19.5 kA
 Stored energy at full field: 2.6 GJ

Yoke

22m long, 15m diameter, 10000 t of iron
5 Barrel "wheels", 3+3 Endcap "disks"

Operate at B=3.8T

Field Mapping inside solenoid

STFC

RAL

Ken Bell

Measured Endcap Deformation at 3.8T

3 Straight Line Monitor (SLM) Laser Lines per Muon Endcap Station 10 optical CCD sensors per SLM

Measured ~15mm deformation agrees well with FEA prediction

All-Silicon Tracker: Pixels & Strips

TOB PIXFI TEC+TFC-TOB TEC - Tracker EndCaps TID - Tracker Inner Disks 2x9 disks, 6400 modules 2x3 disks, 816 modules **TOB - Tracker Outer Barrel TIB - Tracker Inner Barrel** 6 layers, 5208 modules 4 layers, 2724 modules **FPix - Forward Pixels BPix - Barrel Pixels** 2x2 disks, 192 panels, 18Mpix 3 layers, 768 modules, 48 Mpix

Pixel Tracker

Barrel Pixels

- > 3 barrel layers at *r* of 4.3, 7.3, 10.4cm
- 672 modules & 96 half modules
- > 11520 ROCs (48 million pixels)

• Forward Pixels

- 2x2 disks at z = ±34.5 & ±46.5cm
- Extend from 6-15 cm in radius
- ➤ 20° turbine geometry
- ➢ 672 modules in 96 blades
- > 4320 ROCs (18 million pixels)
- Design allows for three high precision tracking points up to |η| of ~2.5
- Active area: 0.78m² (BPIX), 0.28m² (FPIX)
- Pixels 150μm x 100μm. Hit resolution of 10μm (*r-φ*) & 20μm (*z*) expected due to charge sharing & B=4T
- 66M readout channels

TIB \succ 4 layers at r of 25-50cm. Pitch 81/118µm \blacktriangleright Hit resolution 23-34µm in *r*- ϕ TOB 6 layers at r of 50-110cm. Pitch 118/183μm \succ Hit resolution 35-52µm in *r*- ϕ 1st 2 layers of TIB/TOB: 100mrad stereo angle TID 2.4n > 2x3 disks at |z| of 70-115cm Pitch 97/128/143μm TEC 2x9 disks at |z| of 120-280cm Pitch 96/126/128/143/158/183μm 1st 2 rings of TID, Rings 1,2,5 of TEC: stereo 10 layer coverage in $|\eta|$ to ~2.4 Active area: ~210 m² Silicon 75k APV front-end chips 9.6M readout channels

Strip Tracker insertion

Pixel commissioning in CRAFT

Barrel aligned at module level (200-300 hits, 89% aligned)

Pixel occupancy map

STFC

RAL

TOBthick sensors : S/N = 32TIB/TIDthin sensors : S/N = 27/25TEC (mixed thickness) : S/N = 30Conclude: Signal/Noise as expected

TIB aligned: rms= 26-40μm TOB aligned: rms= 24-28μm

STFC

RAL

Mean of residuals [cm]

20

- Hermetic, homogeneous PbWO₄ calorimeter
 - Good energy resolution
- Why use PbWO₄ scintillating crystals?
 - ✤ Short radiation (X₀ = 0.89cm) & Moliere (2.2cm) length
 - Compact, fine granularity
 - Fast and radiation hard
 - Low light yield: compensate with high gain photodetectors which work in magnetic field
 - Avalanche Photodiodes (APDs) in barrel
 - Vacuum Phototriodes (VPTs) in endcaps

✤ All channels pre-calibrated to 1.5% (cosmic rays)

ECAL Endcaps

Endcaps: 2 x 7324 crystals
> 1.479 < |η| < 3.0, |z| ~314cm
> 2 "Dees" per endcap
> Crystals arranged in *xy* grid
◆ Front face 28.6x28.6mm²
◆ Length = 220mm → 24.7 X₀
◆ Quasi-projective geometry

ECAL Endcap Preshower

4300 sensór modules 20m² Silicon 138k channels

Final plane complete this month

Both endcaps installed & checked-out by Easter 2009

- Identifies π^{0} over 1.653 < $|\eta|$ < 2.6
- Improves purity of electron ID
- High granularity \rightarrow improved electron & γ position determination

RAL **ECAL Energy in Beam Splash Events**

EnergyMap EE-, GeV

EnergyMap EE+, GeV

Energy Maps shown. Beam splash events also used to determine channel timings

White areas to be recovered in 2008/09 shutdown

Calibrations not yet applied in Endcaps (lower response VPTs nearer beam pipe)

-86

361 iphi

Stopping power of cosmic rays traversing ECAL, as function of measured momentum (Tracker)

Dashed lines: contributions from collision loss (red) and bremsstrahlung (blue)

Errors: bin-width (x) & statistical (y)

Shows correctness of Tracker momentum scale & ECAL calibration from test beams

Hermetic hadron calorimeter

- Sampling type, brass/scintillator layers (HB, HO, HE). Hybrid Photo-Diodes
- Barrel: Int < 1.4, inside solenoid, single longitudinal sampling</p>
- > Outer: barrel tail-catcher for $|\eta| < 1.26 \rightarrow > 11\lambda_{int}$ in depth
- Endcap: 4.3 ≤ [ŋ] < 3.0</p>
- > Forward: $3.0 \le |\eta| \le 5.0$: Iron/quartz-fibre
- > σ/E (test beam): ~97%/√E ⊕ 8%-

ECAL & HCAL energy deposits highly correlated **HCAL commissioning in CRAFT**

Muon Momentum (GeV/c)

STFC

RAL

Muon System

Ken Bell

Muon System

- Two independent & complementary systems
- At least 4 layers
- Drift Tube Chambers (Barrel) +
 - ✤ 250 chambers, 180k channels
 - * Good muon resolution: $r-\phi \sim 100 \mu m$, Z~150 μm , angle ~1mrad
 - Slower response (up to 400 ns)
 - Economical for use in low rate region
- Resistive Plate Chambers (Barrel & Endcap)
 - ✤ 1020 chambers
 - ↔ Muon spatial resolution: $r-\phi \sim 1.5$ cm
 - Fast response, <3ns timing resolution</p>
 - Relatively inexpensive
 - Dedicated to first level trigger
- Cathode Strip Chambers (Endcaps)
 - ✤ 468 chambers, 450k channels
 - Good muon spatial resolution: $r-\phi \sim 75-150 \mu m$, <2mm at trigger level
 - ✤ Close wire spacing → fast response 4ns timing resolution
 - Good for high rates

Beam Halo Hit Distribution in CSCs

Arrow indicates sequence beam traversed endcap disks: Iron progressively absorbs halo muons...

STFC

RAL

DTs, HCAL & ECAL in Beam Splash Events

~2x10⁹ protons on collimator ~150m upstream of CMS

Muon DTs at CRAFT

Chamber residuals:

- Reasonable agreement between data & MC after fitting arrival time of cosmic muon
- ≻Sigma ~200-260µm
- Sector 4 of wheel -2 shown here
- B-field degrades MB1 resolution in wheels +/-2

- Already have Drift Velocity determination from CRAFT data
 - Innermost stations on outer wheels have largest radial field (eg Wh-2 MB1)
 - ✤ Highly suppressed zero on Y-axis: maximum difference in Drift Velocity is 3%

- Green: Tracker and Muon hits
- Magenta: ECAL
- Blue: HCAL

- Enormous data rate: 10⁹ Hz of collisions
 - ➢ More than 1TByte/s
- Minimum bias in-time pile-up
 - ➤ 22 events per bunch crossing
- Out-of-time pile-up
 - Events from different bunch crossings overlaid
- Tiny cross sections for Higgs and new physics
 > Selection 1:10¹¹
- All online
 - Can't go back and fix it. Events are lost forever!
- Level-1 (hardware): 40MHz →100kHz
- Level-2 (software): 100kHz →~100Hz

Muons

- Three complementary detector systems
- Share hits when available in overlap regions
- Find best combination of information in Global Muon Trigger
- Electrons, jets, energy sums etc.
 - Combine ECAL and HCAL energies in Regional Calo Trigger and do local electron finding
 - Global energy sums and jets in the Global Calo Trigger →
- All objects contribute to L1 accept

STFC

RAL

STFC

RAL

- Install and commission preshower detector
- Tackle infant mortality in detectors installed prior to 2008
- Finalise commissioning of detectors installed in 2008
- Address issues arising from CRAFT running
- Schedule for restart in 2009:
 - Resume cosmic-ray data-taking at B=0T in April
 - Close detector by end of May
 - Extended CRAFT Run before 2009 LHC beams

- Construction of the CMS experiment is almost completed
- Commissioning work already carried out gives confidence that CMS detectors will operate with expected performance
- Integrated operation of subdetectors & central systems using cosmic-ray triggers is now routine, with near-final complexity and functionality
- Challenges conducted around the clock at 100% of 2008 load show that Computing, Software & Analysis tools are ready for early data
- Have already taken and analysed first beam-related data
- Preparations for rapid extraction of physics are well advanced
- Eagerly awaiting first LHC Physics during 2009

• Aims:

- Run CMS for 4 weeks continuously to gain further operational experience this year
- Study effects of B field on detector components (since MTCC)
- Collect 300M cosmic events with tracking detectors and field
- ➤ Aim for 70% efficiency

• Facts:

- Ran 4 weeks continuously from 13-Oct to 11-Nov
 19 days with B=3.8T
- 370M cosmic events collected in total
- 290M with B=3.8T and with strip tracker and DT in readout
 - 194M with all components in

