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We present new measurements of differential cross sections for Z/γ ∗(→ μμ) + jet + X production in a
1 fb−1 data sample collected with the DØ detector in pp̄ collisions at

√
s = 1.96 TeV. Results include

the first measurements differential in the Z/γ ∗ transverse momentum and rapidity, as well as new
measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order
perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed,
except in the region of low Z/γ ∗ transverse momentum. Predictions from two event generators based on
matrix elements and parton showers, and one pure parton shower event generator are also compared to
the measurements. These show significant overall normalization differences to the data and have varied
success in describing the shape of the distributions.

© 2008 Elsevier B.V. All rights reserved.
The production of W or Z bosons in association with jets is an
important signal at hadron colliders such as the Fermilab Tevatron
Collider and the CERN Large Hadron Collider. Leptonic boson de-
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cays can be identified with little background, and measurements
of the boson and jet kinematics provide good tests of pertur-
bative QCD (pQCD) calculations and modeling. Such events also
form the main background to many processes with much smaller
cross sections, including production of the top quark, Higgs boson,
and particles expected in some supersymmetric scenarios. Accurate
theoretical modeling of W or Z boson + jet final states is a key
element in studying such rare processes; developing and testing
these models relies upon input from experimental measurements
of boson + jet production.

Previous boson + jet measurements at the Fermilab Tevatron
Collider [1,2] have included comparisons with next-to-leading or-
der (NLO) pQCD predictions from mcfm [3] and a tree-level matrix
element calculation matched to a parton-shower (ME + PS) Monte
Carlo event generator [4]. In this Letter we describe new mea-

mailto:ghesketh@fnal.gov
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surements of differential cross sections in Z/γ ∗(→ μμ) + jet + X
production in pp̄ collisions at

√
s = 1.96 TeV, with a data sample

corresponding to 0.97 ± 0.06 fb−1 [5] recorded by the DØ detector
between April 2002 and February 2006. The measurement is car-
ried out in a region of dimuon mass 65 < Mμμ < 115 GeV in which
the inclusive cross section for Z/γ ∗ production is approximately
equal to that of pure Z boson production, and the measured dis-
tributions are corrected to the particle level [6]. Differential cross
sections binned in the Z/γ ∗ momentum component perpendicu-
lar (transverse) to the beam, p Z

T (dσZ+jet+X/dp Z
T ) and rapidity,9 y Z

(dσZ+jet+X/dy Z ), are presented here for the first time, and binned

in the leading (in pT ) jet pT (dσZ+jet+X/dpjet
T ) extended to lower

pjet
T , and y (dσZ+jet+X/dyjet) covering a wider yjet range than pre-

vious studies. Comparisons are made using NLO pQCD predictions
from mcfm with non-perturbative corrections applied. Currently
the best tools for generating simulated boson + jets events are
tree-level ME + PS calculations. Several such calculations are avail-
able using different schemes to combine the matrix element and
partons shower contributions, and with some differences in the
predicted kinematics [7]. Two such ME + PS event generators are
compared to the measurements: alpgen [8], with pythia [9] used
for the parton-showering; and sherpa [10]. Finally, a pure parton-
shower prediction from pythia is also compared.

The measurements are made with the DØ detector, which is
described in detail elsewhere [11]; a brief overview is given here
of the most relevant components for this analysis. The interaction
region is surrounded by a magnetic tracking system, comprising a
silicon micro-strip tracker and a fiber tracker, both located within a
2 T superconducting solenoid magnet. Three liquid-argon/uranium
calorimeters surround the tracking system: a central section cover-
ing pseudo-rapidity |η| � 1.1,10 and two end calorimeters that ex-
tend coverage to 1.1 < |η| < 4.2, each housed in separate cryostats.
Scintillators between the cryostats sample shower energy for 1.1 <

|η| < 1.4. Luminosity is measured using plastic scintillator arrays
located in front of the end calorimeter cryostats, covering 2.7 <

|η| < 4.4. A muon system surrounds the calorimetry, consisting
of three layers of tracking detectors and scintillation trigger coun-
ters; these provide muon identification and triggering for |η| < 2.
Sandwiched between the first and second layer are 1.8 T toroidal
iron magnets, allowing an independent momentum measurement
in the muon system.

Events used in this measurement are selected with a suite of
triggers using information from the muon and tracking systems
and are required to have two muon candidates reconstructed in
those systems. The primary collision vertex in each event is recon-
structed requiring at least three tracks and applying fit quality cuts.
To reject mis-reconstructed events and cosmic rays, the muons
must be consistent with this vertex in directions both transverse
and parallel to the beam. Based on the information from the track-
ing system, the muons are required to have pT > 15 GeV and
dimuon mass 65 < Mμμ < 115 GeV.

Jets are reconstructed from clusters of energy deposited in
calorimeter cells using the DØ Run II midpoint cone algorithm
[12] with a splitting/merging fraction of 0.5 and a cone size of
�R = √

(�φ)2 + (�y)2 = 0.5, where φ is the azimuthal angle; jets
caused by noise are rejected with quality and shape cuts. Jets are
corrected for the calorimeter response, instrumental out-of-cone
showering effects, and additional energy deposits in the calorime-
ter that arise through detector noise and pile-up from multiple in-
teractions and previous pp̄ bunch crossings. These jet energy scale

9 Rapidity is defined as y = ln E−pz
E+pz

, where E is the energy, and pz the compo-
nent of momentum parallel to the proton beam direction.
10 η = − ln[tan(θ/2)], where θ is the polar angle, defined with respect to the pro-

ton beam axis.
corrections are determined using transverse momentum imbalance
in γ + jet events, after the electromagnetic response is calibrated
using Z/γ ∗ → ee events. For clarity in the following discussions,
the measured jet transverse momentum and rapidity after these
corrections are denoted pJET

T and yJET, to distinguish them from
the particle level quantities pjet

T and yjet.
Further selections ensure that the measurement is carried out

in regions with high acceptance and well understood detector per-
formance: the muons are required to have |η| < 1.7, the primary
vertex must be within 50 cm of the detector center along the
beam direction, and jets are required to have a pJET

T > 20 GeV and

|yJET| < 2.8. Additionally, events with jets in the pJET
T range 15–20

GeV are kept in the sample for studies of the effects of detector
resolution.

The main source of background in this analysis is muons from
semi-leptonic decays in high energy jets or W + jet production.
This is reduced to negligible levels (< 0.5% of the final sam-
ple) by limiting the sum of track momenta and the calorime-
ter energy allowed around each muon. The muons are also re-
quired to not overlap with any jet by requiring angular separa-
tion

√
(�φ(μ, jet))2 + (�η(μ, jet))2 > 0.5. Other sources of back-

ground (e.g., top quark production, Z/γ ∗ → τ+τ−) are estimated
using simulation and found to be negligible (< 0.1%). A total of
59336 Z/γ ∗ → μ+μ− candidate events are selected before jet re-
quirements, of which 9927 contain at least one jet with pJET

T >

20 GeV passing all selections.
Two simulations of Z/γ ∗ + jets events are used: a sample gen-

erated with pythia v6.323, and a sample generated with alpgen

v2.05 using pythia for parton showering, both with the pythia un-
derlying event model configured using tune A [13]. Both samples
are passed through a geant [14] simulation of the detector re-
sponse. Real data events from random bunch crossings are overlaid
on the simulation to reproduce the effects of multiple pp̄ interac-
tions and detector noise.

The muon trigger efficiency is measured in data and parame-
terized in terms of variables related to the geometry of the muon
and tracking systems. The selected events are then corrected on
an event-by-event basis for this efficiency, with the average effi-
ciency being (88.3 ± 0.3)%, quoting just the statistical uncertainty.
Muon reconstruction, tracking, and isolation efficiencies are mea-
sured in the data and in the simulation; scale factors are applied
to correct for the differences. The total systematic uncertainty on
the muon trigger and identification efficiency translates into a 5%
uncertainty on the measured cross sections, with no significant
dependence on the variables studied in this analysis. Transverse
momentum imbalance in Z/γ ∗ → ee + jet events is studied in data
and simulation, and factors applied to the simulation to correct the
jet response for any differences.

To extract the differential cross sections, we correct the re-
constructed data distributions to particle-level distributions, de-
riving the corrections from simulation. We first select Z/γ ∗ plus
jet events based on the detector response in simulated events.
These Z/γ ∗ and jet variables are compared to quantities inde-
pendently measured directly from the particles in the simulated
events, applying comparable kinematic selections to minimize ac-
ceptance effects. For this particle level selection, the Z/γ ∗ mass
and kinematics are reconstructed from the generated muons af-
ter QED final state radiation (FSR), requiring |ημ| < 1.7 and 65 <

Mμμ < 115 GeV. Jets are reconstructed using the same reconstruc-
tion algorithm, now on all final state particles excluding the Z/γ ∗
decay products, and selected requiring |yjet| < 2.8. These particle
jets are matched to jets reconstructed in the simulation by re-
quiring �R < 0.5. We quote results for leading particle jets with
pjet

T > 20 GeV; however, due to instrumental effects and resolution,
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Fig. 1. The migration matrix for leading pjet
T . Element i, j is the probability for a

particle jet in pT bin i to be measured in pT bin j, represented by the area of each
box. Each row sums to unity.

measured jets with pJET
T > 20 GeV include significant contributions

from particle jets with lower pjet
T . To study this effect, jets at the

particle level are reconstructed to very low pT (3 GeV).
We next describe the process of correcting the pT distribu-

tion of the leading (in pT ) jet from the measured level to the
particle level; the treatment of p Z

T is very similar. The main com-
plexity in the jet pT corrections arises from the experimental pT

resolution affecting the relationship between particle jets and the
corresponding jets reconstructed in the detector. First, the finite
energy resolution can change the pT ordering of jets between the
particle level and detector level. To account for this we correct
the measured pJET

T distribution to remove leading measured jets
matched to sub-leading particle jets, based on a study of simulated
events. Here we also remove measured jets arising from additional
collisions in the event, modeled by the random bunch crossings
from real data overlaid on the simulation. This combined correc-
tion averages (11.8 ± 0.2)%, varying from (33.8 ± 0.2)% in the range
15 < pJET

T < 20 GeV, to (3.1 ± 0.1)% for pJET
T > 50 GeV. The sec-

ond effect of the resolution results in some jets from a given pjet
T

bin being measured in a different pJET
T bin. This effect is mitigated

to a degree by the choice of binning for the measurement: bins
are taken to be wider than the detector resolution and to con-
tain a sufficient number of events so that statistical fluctuations
do not dominate the final uncertainty on each bin. Studying the
pjet

T and the corresponding measured pJET
T for jets in the full de-

tector simulation allows the remaining effect to be parameterized
in a “migration matrix” (see Fig. 1), with element i, j being the
probability for a particle jet in pjet

T bin i to be measured in pJET
T

bin j. The data distribution is then corrected using a regularized
inversion of this matrix [15], with the constraint that the result-
ing distribution does not have large second derivatives. Including
the reconstructed jets with 15 < pJET

T < 20 GeV in the matrix fur-

ther constrains the effects of lower pjet
T particle jets fluctuating up

in reconstructed pJET
T . Finally, the distribution is corrected for effi-

ciency and acceptance calculated from simulation, then divided by
the bin widths and integrated luminosity to yield the differential
cross section.

Uncertainties on the differential cross section are derived em-
pirically through ensemble tests. A set of 100 ensembles of the
same size as the data set are drawn from a pythia sample. To re-
produce the pjet

T distribution in data, the pythia pjet
T spectrum is

re-weighted using a function derived from the corrected data and
a large (2.5 million events) independent pythia sample. Applying
this function to the ensembles reproduces the data pjet

T distribu-
tion while retaining realistic statistical fluctuations. The measured
distribution in each ensemble is then corrected in the same way as
the data. Uncertainties are extracted by taking the fractional differ-
ence between the fully corrected distribution and the actual pjet

T
distribution in each ensemble. The systematic uncertainty is the
mean fractional difference in each pjet

T bin over all 100 ensembles;
the statistical uncertainty is the RMS around the mean. These sta-
tistical uncertainties account for the statistics in each measured
bin, and the effects on those statistics of migrations between bins.
The systematic uncertainties are typically below 2%, and the statis-
tical uncertainty in each bin varies from 2% at low pjet

T to 11% at

high pjet
T .

Further systematic uncertainties are then assessed. Varying the
re-weighting function used in generating the ensembles produces
uncertainties at the 3% level, mostly at low pjet

T due to the weaker
constraints on the particle jet spectrum below the measured re-
gion. Studies of the jet resolution and reconstruction efficiency
show small effects, and larger (� 3%) effects are seen by varying
the jet energy scale within uncertainties in the data and simula-
tion. All other systematic uncertainties studied produced negligible
effects. No strong correlations are observed between the various
sources of uncertainty, and the individual contributions are com-
bined in quadrature to obtain the total systematic uncertainty.

The p Z
T distribution is corrected using the same approach, em-

ploying a regularized inversion of the migration matrix with un-
certainties derived from ensemble testing; in this case, the muon
pT resolution is the source of migration. Along with the sources
of systematic uncertainty considered for the leading jet pT , the
uncertainty on the agreement between the muon resolution in
simulation and data is also considered. Varying the resolution in
simulation within uncertainties produces effects below (2–3)% on
the differential cross section. Varying the jet energy scale pro-
duces systematic effects of up to 10% in the region of p Z

T < 20 GeV,

which is sensitive to jets close to the reconstructed pJET
T cutoff.

The measurements of y Z and yjet are significantly less chal-
lenging, and the method used on these variables is covered briefly.
These distributions do not suffer from significant resolution effects
on the rapidity measurement, but still need to be corrected for ef-
ficiency and acceptance. To do this, the ratio of particle level to
measured events in each bin is calculated in simulation and ap-
plied to the measured data distribution. Ensemble testing is then
used to measure the uncertainties, with the same sources as the
pjet

T and p Z
T measurements respectively. Including the jet system-

atics covers the correlations between the rapidity and pjet
T distri-

butions, taking into account changes in the rapidity distributions
as events enter or leave the sample due to jet migrations across
the pJET

T selection of 20 GeV. As the distributions are symmetric
around zero, |y| is measured in both cases to increase the statis-
tics in each bin.

Integrating over any of the differential cross sections yields the
Z/γ ∗(→ μμ) + jet + X cross section, which we measure to be
18.7 ± 0.2(stat.) ± 0.8(syst.) ± 0.9(muon) ± 1.1(lumi.) pb, with the
following requirements: all boson properties are calculated from
the muons after QED FSR, and the muons are required to have
|y| < 1.7 and dimuon mass 65 < Mμμ < 115 GeV; particle jets
are reconstructed using the DØ Run II midpoint algorithm with
a splitting/merging fraction of 0.5 and a cone size of �R = 0.5 on
all final state particles except the Z/γ ∗ decay products and any
FSR photons from the muons, and are required to have |yjet| < 2.8
and pjet

T > 20 GeV. The quoted muon uncertainty covers the muon
identification and trigger efficiency determination. Different defi-
nitions of observables complicate comparisons, but this represents
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Table 1
Non-perturbative and FSR correction factors applied to the mcfm prediction for
leading pjet

T in Z/γ ∗ + jet + X events.

pjet
T (GeV) Non-pert. corr. FSR corr.

20–30 1.041 0.977
30–40 1.017 0.977
40–50 1.001 0.977
50–60 0.995 0.977
60–70 0.991 0.977
70–80 0.989 0.978
80–100 0.988 0.978

100–130 0.986 0.978
130–200 0.984 0.978

a significant reduction in cross section uncertainty from the pre-
viously published DØ result using 0.4 fb−1 of data [1], and is of
comparable accuracy to the CDF result using 1.7 fb−1 [2]. For ref-
erence, we also measure an inclusive Z/γ ∗(→ μμ) cross section
requiring only 65 < Mμμ < 115 GeV, taking the muons after QED
FSR with no rapidity requirements, and no jet requirements, to be
233±1(stat.)±8(syst.)±12(muon)±14(lumi.) pb. Adding only the
requirement that the muons have |y| < 1.7 yields a cross section
of 118 ± 0.5(stat.) ± 4(syst.) ± 6(muon) ± 7(lumi.) pb. The muon
and luminosity uncertainties are completely correlated between
the inclusive Z/γ ∗ (with and without the muon y requirement)
and Z/γ ∗ + jet measurements, and all other systematics are un-
correlated.

A number of theoretical predictions are now compared to the
measured integrated and differential Z/γ ∗(→ μμ) + jet + X cross
sections. NLO pQCD calculations are obtained using mcfm together
with the NLO CTEQ6.6M parton distribution functions of the pro-
ton (PDF) [16]. The associated PDF error sets are used to assess
uncertainties, which are about 3%. Renormalization and factoriza-
tion scales are set to the sum in quadrature of the mass and pT

of the Z boson, and uncertainties are derived by varying both
scales down or up together by a factor of two, which changes
the prediction by ±7%. Non-perturbative corrections for hadroniza-
tion and the underlying event are derived from pythia v6.418
Z/γ ∗ + jet production, with the leading order (LO) PDF CTEQ5L
[17] and the underlying event tune DW [13]. These are derived
by comparing the full prediction (taken from the final state par-
ticles, including the underlying event) to the purely perturbative
part (calculated from partons taken after the parton shower, with
no underlying event). Corrections for QED FSR from the muons
are derived from the same pythia sample, by comparing the pre-
diction calculated using the muons after FSR to those using the
muons before FSR. These FSR corrections are around 2% caused
mainly by events migrating out of the mass window, with little
dependence on any variable considered except at low p Z

T and high
y Z . The non-perturbative and FSR corrections are given in Tables
1, 2, 3, and 4. The prediction for the Z/γ ∗ + jet + X cross sec-
tion from NLO pQCD with our stated acceptance cuts and after
corrections (hereafter referred to as the NLO pQCD prediction), is
17.3 ± 1.2(scale) ± 0.5(PDF) pb. This is 5% below the measured
value, and within uncertainties. For reference, mcfm is also used
to calculate the LO pQCD prediction. After acceptance cuts and cor-
rections this is 12.8+2.1

−1.7(scale) ± 0.3(PDF) pb.
Comparisons are also made using three event generators: (i) a

sample generated with alpgen v2.13 with up to three partons in
the matrix element calculation, and the factorization and renor-
malization scales squared set to the sum in quadrature of the mass
and pT of the Z boson, and pythia with tune QW [13] used for
the parton showering; (ii) a sample generated with sherpa v1.1.1,
again with up to three partons in the matrix element calculation,
and the default parton showering algorithm (apacic) and underly-
ing event model (amisic); (iii) an inclusive Z/γ ∗ sample generated
Table 2
Non-perturbative and FSR correction factors applied to the mcfm prediction for
leading |yjet| in Z/γ ∗ + jet + X events.

|yjet| Non-pert. corr. FSR corr.

0.0–0.4 1.026 0.977
0.4–0.8 1.025 0.977
0.8–1.2 1.022 0.977
1.2–1.6 1.018 0.977
1.6–2.0 1.001 0.977
2.0–2.4 1.009 0.977
2.4–2.8 0.983 0.977

Table 3
Non-perturbative and FSR correction factors applied to the mcfm prediction for p Z

T
in Z/γ ∗ + jet + X events.

p Z
T (GeV) Non-pert. corr. FSR corr.

0–10 1.099 1.268
10–18 1.284 1.041
18–26 1.021 0.977
26–35 0.995 0.972
35–45 0.997 0.973
45–60 0.999 0.967
60–80 1.000 0.959
80–120 1.000 0.951

120–200 1.000 0.944

Table 4
Non-perturbative and FSR correction factors applied to the mcfm prediction for |y Z |
in Z/γ ∗ + jet + X events.

|y Z | Non-pert. corr. FSR corr.

0.0–0.2 1.024 0.979
0.2–0.4 1.024 0.978
0.4–0.6 1.024 0.978
0.6–0.8 1.021 0.978
0.8–1.0 1.017 0.977
1.0–1.2 1.013 0.975
1.2–1.4 1.010 0.971
1.4–1.6 1.001 0.965
1.6–1.8 1.000 0.928

with pythia v6.418, using tune QW. In order to use consistent PDF
with all three, the NLO CTEQ6.1M [18] is chosen. For both alpgen

and sherpa, jets from the matrix element calculation are required
to have pT > 15 GeV, and a separation �R > 0.4, to ensure full
coverage of the measured phase space. For all three event gener-
ators, the boson kinematics are calculated from the muons after
QED FSR, for consistency with the measured observables. After ap-
plying our stated particle level Z/γ ∗ + jet selection, the predicted
cross sections are 11.6 pb (alpgen), 15.0 pb (sherpa), and 12.1 pb
(pythia).

The differential cross sections are shown binned in leading pjet
T

(Fig. 2), leading jet y (Fig. 3), p Z
T in events with at least one

jet (Fig. 4), and y Z in events with at least one jet (Fig. 5). Data
points in each bin are placed where the differential cross section
in simulation is equal to the bin average [19]. The data are shown
with statistical uncertainties (inner error bar) and sum in quadra-
ture of statistical and systematic uncertainties (outer error bar),
excluding the uncertainties on the measured integrated luminos-
ity and the muon identification and trigger efficiencies. These final
two uncertainties are completely correlated between bins and with
the muon and luminosity uncertainties on the measured inclusive
Z/γ ∗ cross section; however, they are included to form the total
uncertainty, shown as the shaded region. For clarity, only the pre-
dictions of NLO pQCD and alpgen are shown in part (a) of each
figure, though the prediction from NLO pQCD is not shown at low
p Z

T (Fig. 4) where non-perturbative processes dominate over the
NLO contribution. The data results are also provided in Tables 5,
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Fig. 2. (a) The measured cross section in bins of leading pjet
T for Z/γ ∗ + jet + X

events. Predictions from NLO pQCD and alpgen are compared to the data. (b) The
ratio of data and predictions from NLO pQCD + corrections, sherpa, and pythia to
the prediction from alpgen.

Table 5
The measured cross section in bins of leading pjet

T for Z/γ ∗ + jet + X events. Un-
certainties are split into statistical and systematic; these are combined with an
additional constant 8.0% normalization uncertainty from the luminosity, trigger, and
muon identification to form the total uncertainty.

pjet
T

(GeV)
Bin ctr.
(GeV)

dσ/dpjet
T

(pb/GeV)
δσstat.

(%)
δσsyst.

(%)
δσtotal
(%)

20–30 24.7 0.867 2.4 4.7 9.6
30–40 34.8 0.402 2.7 2.9 8.9
40–50 44.8 0.219 3.2 4.2 9.5
50–60 54.8 0.134 4.4 5.1 10.5
60–70 64.8 0.0854 5.1 4.6 10.6
70–80 74.7 0.0535 6.3 6.7 12.2
80–100 89.0 0.0301 7.9 6.2 12.9

100–130 113.5 0.0118 8.4 10.6 15.7
130–200 157.7 0.00226 13.3 18.1 23.8

6, 7, and 8. In part (b) of each figure, the distributions from data,
NLO pQCD, sherpa and pythia are shown divided by the prediction
from alpgen. The NLO pQCD prediction is shown with the scale
and PDF uncertainties combined in quadrature as a hatched re-
gion; the scale uncertainty is approximately a factor of two larger
than the PDF uncertainty across all distributions.

In summary, we have measured differential cross sections for
Z/γ ∗ + jet + X production with 0.97 ± 0.06 fb−1 of integrated
luminosity recorded by the DØ experiment in pp̄ collisions at√

s = 1.96 TeV. We presented the first results binned in p Z
T and

y Z ; as well as new results binned in leading jet pT and y, ex-
Fig. 3. (a) The measured cross section in bins of leading |yjet| for Z/γ ∗ + jet + X
events. Predictions from NLO pQCD and alpgen are compared to the data. (b) The
ratio of data and predictions from NLO pQCD + corrections, sherpa, and pythia to
the prediction from alpgen.

Table 6
The measured cross section in bins of leading |yjet| for Z/γ ∗ + jet + X events.
Uncertainties are split into statistical and systematic; these are combined with an
additional constant 8.0% normalization uncertainty from the luminosity, trigger, and
muon identification to form the total uncertainty.

|yjet| Bin
center

dσ/d|yjet|
(pb)

δσstat.

(%)
δσsyst.

(%)
δσtotal
(%)

0.0–0.4 0.189 12.01 2.3 2.9 8.8
0.4–0.8 0.609 10.66 2.2 2.9 8.8
0.8–1.2 1.00 9.13 2.8 5.3 10.0
1.2–1.6 1.40 6.70 3.2 6.9 11.0
1.6–2.0 1.80 4.38 4.2 7.6 11.8
2.0–2.4 2.20 2.46 4.9 11.1 14.5
2.4–2.8 2.59 1.40 7.3 13.1 17.0

tending the measured pjet
T and yjet ranges substantially. The total

Z/γ ∗ + jet + X cross section measured in data is 5% above the
prediction from NLO pQCD + corrections, which is within the total
uncertainties. This is comparable with the trend observed in pre-
vious measurements [2], although direct comparisons are compli-
cated by different definitions of the final observables. The shapes
of the differential distributions are generally well described by NLO
pQCD, though the distribution at lower p Z

T (below the pjet
T cutoff

of 20 GeV) is dominated by non-perturbative processes. The total
cross sections predicted by the alpgen and pythia event generators
are significantly below the measured value and are more consis-
tent with the LO pQCD predictions. The prediction from sherpa
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Fig. 4. (a) The measured cross section in bins of p Z
T for Z/γ ∗ + jet + X events.

Predictions from NLO pQCD and alpgen are compared to the data. (b) The ratio
of data and predictions from NLO pQCD + corrections, sherpa, and pythia to the
prediction from alpgen.

Table 7
The measured cross section in bins of p Z

T for Z/γ ∗ + jet + X events. Uncertain-
ties are split into statistical and systematic; these are combined with an additional
constant 8.0% normalization uncertainty from the luminosity, trigger, and muon
identification to form the total uncertainty.

p Z
T

(GeV)
Bin ctr.
(GeV)

dσ/dp Z
T

(pb/GeV)
δσstat.

(%)
δσsyst.

(%)
δσtotal
(%)

0–10 5.2 0.0410 5.6 18.5 20.1
10–18 14.5 0.151 4.4 15.0 17.0
18–26 21.7 0.448 2.5 9.5 12.6
26–35 31.5 0.525 2.5 6.8 10.8
35–45 39.8 0.342 2.3 2.2 8.6
45–60 52.1 0.179 2.9 4.9 9.8
60–80 69.3 0.0748 3.7 4.6 9.9
80–120 97.3 0.0233 5.8 3.0 10.3

120–200 148.6 0.00309 10.8 6.7 15.0

lies between the LO and NLO pQCD prediction. The shapes of the
data distributions are generally well described by alpgen, except
at low p Z

T . There is also indication that the jet rapidity distribution
is narrower in alpgen than in data, NLO pQCD, sherpa and pythia.
Comparisons to the other event generators show that sherpa has
a slope in pjet

T and p Z
T relative to the data, with more events at

high pT compared to low pT ; pythia shows the opposite behav-
ior. This measurement tests the current best predictions for heavy
boson + jet production at hadron colliders. As the data are fully
corrected for instrumental effects, they can be directly used in
Fig. 5. (a) The measured cross section in bins of |y Z | for Z/γ ∗ + jet + X events.
Predictions from NLO pQCD and alpgen are compared to the data. (b) The ratio
of data and predictions from NLO pQCD + corrections, sherpa, and pythia to the
prediction from alpgen.

Table 8
The measured cross section in bins of |y Z | for Z/γ ∗ + jet + X events. Uncertain-
ties are split into statistical and systematic; these are combined with an additional
constant 8.0% normalization uncertainty from the luminosity, trigger, and muon
identification to form the total uncertainty.

|y Z | Bin
center

dσ/d|y Z |
(pb)

δσstat.

(%)
δσsyst.

(%)
δσtotal
(%)

0.0–0.2 0.099 17.15 2.7 6.5 10.6
0.2–0.4 0.308 17.33 2.7 5.7 10.2
0.4–0.6 0.504 16.32 3.0 7.1 11.1
0.6–0.8 0.708 14.47 3.2 6.4 10.7
0.8–1.0 0.890 11.88 3.7 4.5 9.9
1.0–1.2 1.10 8.17 4.2 9.0 12.7
1.2–1.4 1.30 5.57 4.6 5.2 10.6
1.4–1.6 1.50 2.54 8.2 9.6 14.9
1.6–1.8 1.68 0.17 17.0 23.6 30.2

testing and improving the existing event generators, or any future
calculations and models.
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