New Insights into Hadron Structure

Anthony W. Thomas

UK Annual Theory Meeting Durham : Dec 19th 2008

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson G

Outline

Thomas Jefferson National Accelerator Facility

- Octet Masses and Sigma terms
- Strangeness in the Nucleon

and.... Dark Matter Searches

Solution of the Proton Spin Problem

(Nuclei in the Framework of QCD)

(Significance for dense matter)

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson C

Open Questions for Hadron Spectroscopy

Does lattice QCD precisely reproduce the best experimental data

- spectroscopy, form factors, DIS, GPDs?

- Are some observables more likely to yield interesting constraints than others?
- What physical insight can LQCD yield into how QCD works?

Thomas Jefferson National Accelerator Facility

• Are we able to take the lessons learnt in hadron structure and use them to understand nuclear structure better?

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson (

Formal Chiral Expansion

Formal expansion of Hadron mass:

$$\begin{split} \mathbf{M}_{N} &= \mathbf{c}_{0} + \mathbf{c}_{2} \ \mathbf{m}_{\pi}^{2} + \mathbf{c}_{LNA} \ \mathbf{m}_{\pi}^{3} + \mathbf{c}_{4} \ \mathbf{m}_{\pi}^{4} + \mathbf{c}_{NLNA} \ \mathbf{m}_{\pi}^{4} \ln \mathbf{m}_{\pi} + \mathbf{O}(\mathbf{m}_{\pi}^{5}) \\ & & \swarrow \\ \mathbf{M} \text{ass in chiral limit} \\ & & \land \\ \text{In First (hence "leading") non-analytic term ~ m_{q}^{3/2} \\ (1 \text{ In FULL QCD..... there is in QQCD)} \\ \end{split}$$

Convergence?

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

Tellerson C

Convergence!

Knowing χ PT, fit with: $\alpha + \beta m_{\pi}^2 + \gamma m_{\pi}^3$ (dashed curve)

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

The "big picture"

No: FRR explains this because...

It preserves model independent LNA and NLNA behavior and

- For sound physical reasons, FRR suppresses meson loops once m_{π} exceeds about 0.4 GeV
- Yields convergent series expansion over mass region covered by lattice data
- Form factor naturally yields GT discrepancy of right sign and magnitude – and therefore correct m_π⁵ term!
 i.e. correct NNLNA behavior

N.B. Usual EFT yields this term only at two loops

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

Collerson (

Some details of FRR

(with dipole regulator; /// closed forms for other regulators)

Operated by Jefferson Science Associates for the U.S. Department of

Tefferson Pab

Pion cloud and sea quark flavor asymmetry in the impact parameter representation

M. Strikman

Department of Physics, Pennsylvania State University, University Park, PA 16802, USA E-mail: strikman@phys.psu.edu

C. Weiss*

Theory Center, Jefferson Lab, Newport News, VA 23606, USA E-mail: weiss@jlab.org

Prediction of d – u > 0 from pion cloud 1983 (AWT, Phys. Lett. B126, 97)

- Here analysis establishes model independent piece, for b>0.55fm
- Inside is "non-chiral" core
- m_π > 400 MeV : pion cannot be distinguished from "core"
- chiral behavior disappears

Operated by Jefferson Science Associates for the U.S. Department of

χ'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon

2						Sta	itus in 2	2004
() 1.6 9) 1.4 ₩ 1.2						FRR ansv syste	give sa ver to < ematic	ame <<1% error!
0.8 0.2	0	.4 m _π ² (Ge	0.6 eV ²)	0.8	1	-		
	Bare Coefficients Rend				Renorma	ormalized Coefficients		
Regulator	a_0^{Λ}	a_2^{Λ}	a_4^{Λ}	Λ	c_0	c_2	c_4	m_N
Monopole	1.74	1.64	-0.49	0.5	0.923(65)	2.45(33)	20.5(15)	0.960(58)
Dipole	1.30	1.54	-0.49	0.8	0.922(65)	2.49(33)	18.9(15)	0.959(58)
Gaussian	1.17	1.48	-0.50	0.6	0.923(65)	2.48(33)	18.3(15)	0.960(58)
Sharp cutoff	1.06	1.47	-0.55	0.4	0.923(65)	2.61(33)	15.3(8)	0.961(58)
Dim. Reg. (BP)	0.79	4.15	+8.92	_	0.875(56)	3.14(25)	7.2(8)	0.923(51)

Leinweber et al., PRL 92 (2004) 242002 Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Pab

Power Counting Regime

Ensure coefficients c_0 , c_2 , c_4 all identical to 0.8 GeV fit

Leinweber, Thomas & Young, hep-lat/0501028

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tefferson C

Lattice Simulation Results: LHPC

Now to 2008

Octet-baryon masses

We fit using SU(3) expansions plus FRR loops (π, η and K)
 Leading-order expansion O(1)

$$M_{N} = M_{0} + 2(\alpha_{M} + \beta_{M})m_{q} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$M_{\Lambda} = M_{0} + (\alpha_{M} + 2\beta_{M})m_{q} + \alpha_{M}m_{s} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$M_{\Sigma} = M_{0} + \frac{1}{3}(5\alpha_{M} + 2\beta_{M})m_{q} + \frac{1}{3}(\alpha_{M} + 4\beta_{M})m_{s} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$M_{\Xi} = M_{0} + \frac{1}{3}(\alpha_{M} + 4\beta_{M})m_{q} + \frac{1}{3}(5\alpha_{M} + 2\beta_{M})m_{s} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$m_\pi^2 = 2Bm_q \quad m_K^2 = B(m_q + m_s)$$

$$m_q
ightarrow rac{m_\pi^2}{2B}, \quad m_s
ightarrow rac{2m_K^2 - m_\pi^2}{2B} \qquad \{lpha, eta, \sigma\}
ightarrow B\{lpha', eta', \sigma'\}$$

Jefferson Lab
Thomas Jefferson National Accelerator Facility
Page 13
For Science

U.S. DEPARTMENT OF ENERGY

LHPC Data

(Walker-Loud et al.. arXiv:0806.4549)

U.S. DEPARTMENT OF ENERGY

PACS-CS Data

(Aoki et al., arXiv:0807.1661[hep-lat])

U.S. DEPARTMENT OF ENERGY

Summary of Results of Combined Fits (of 2008 LHPC & PACS-CS data)

N. B. Masses are absolute calculations based upon heavy quark potential, which involves no chiral physics

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tefferson Pal

Strangeness Has Been Widely Believed to Play a Major Role in N Structure– Does It??

• As much as 100 to 300 MeV of proton mass:

Hence 110 \pm 110 MeV (increasing to 180 \pm 180 for higher $\sigma_{\rm N}$)

As much as half the deuteron magnetic moment?

As much as 10% of the spin of the proton?

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter

John Ellis,^{1,*} Keith A. Olive,^{2,†} and Christopher Savage^{2,‡}

```
CERN-PH-TH/2008-005
UMN-TH-2631/08
FTPI-MINN-08/02
```

We find that the spin-independent cross section may vary by almost an order of magnitude for 48 MeV $< \Sigma_{\pi N} < 80$ MeV, the ± 2 - σ range according to the uncertainties in Table I. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. Propagating the ± 2 - σ uncertainties in $\Delta_s^{(p)}$, the next most important parameter, we find a variation by a factor ~ 2 in the spin-dependent cross section. Since the spinindependent cross section may now be on the verge of detectability in certain models, and the uncertainty in the cross section is far greater, we appeal for a greater, dedicated effort to reduce the experimental uncertainty in the π -nucleon σ term $\Sigma_{\pi N}$. This quantity is not just an object of curiosity for those interested in the structure of the nucleon and nonperturbative strong-interaction effects: it may also be key to understanding new physics beyond the Standard Model.

$$\mathcal{L} = \alpha_{2i} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \overline{q_{i} \gamma_{\mu} \gamma^{5} q_{i}} + \alpha_{3i} \bar{\chi} \chi \overline{q_{i} q_{i}} \sigma \text{ terms}$$
Neutralino (0.3 GeV / cc :WMAP)
Thomas Jefferson National Accelerator Facility

Model Page 18

Market Mill Dependent of Face

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

McGovern & Birse

First to calculate two-loop, dim-reg χ PT (hep:lat/0608002)

- Major correction is m_{π} dependence of $g_{\pi NN}$ i.e. origin of GT discrepancy : $g_{\pi NN} \neq g_A / f_{\pi} \frac{M_V}{M_V}$
- Leads to large Order (m_{π}^{5}) term
- Agree that convergence of formal chiral
 Agree that
 Agree that
 Agree that
 Agree that
 A

 $M_N = 0.885 + 3.20m_{\pi}^2 - 5.6m_{\pi}^3 + 34 m_{\pi}^4 - (50-110)m_{\pi}^5 \dots$

c.f. FRR fit required to include physical nucleon mass:

 $M_N = 0.897 + 2.83m_{\pi}^2 - 5.6m_{\pi}^3 + 22m_{\pi}^4 - (44 \pm 18)m_{\pi}^5 \dots$

Leinweber et al., Lect. Notes in Phys. 663 (2005) 113

Thomas Jefferson National Accelerator Facility

Cellerson C

DEPARTMENT OF ENERG

1.4 1.2

Sigma Commutator

 $\sigma = \langle N | (m_u + m_d) (\overline{u} u + d d)/2 | N \rangle \equiv m_a \partial M_N / \partial m_a$

Operated by Jefferson Science Associates for the U.S. Department of Energy

Naïve Expansion Traditionally Used to Extract σ Terms is Hopeless!

Leading-order expansion O(1)

$$M_{N} = M_{0} + 2(\alpha_{M} + \beta_{M})m_{q} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$M_{\Lambda} = M_{0} + (\alpha_{M} + 2\beta_{M})m_{q} + \alpha_{M}m_{s} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$M_{\Sigma} = M_{0} + \frac{1}{3}(5\alpha_{M} + 2\beta_{M})m_{q} + \frac{1}{3}(\alpha_{M} + 4\beta_{M})m_{s} + 2\sigma_{M}(2m_{q} + m_{s})$$

$$M_{\Xi} = M_{0} + \frac{1}{3}(\alpha_{M} + 4\beta_{M})m_{q} + \frac{1}{3}(5\alpha_{M} + 2\beta_{M})m_{s} + 2\sigma_{M}(2m_{q} + m_{s})$$

Need O(m_{π}^{6}) to get accurate light quark σ term

While for strange condensate expansion is useless !

BUT through FRR have closed expression and can evaluate

Operated by Jefferson Science Associates for the U.S. Department of Energy

(ellerson C

Summary of Results of Combined Fits (of 2008 LHPC & PACS-CS data)

B	Mass (GeV)	$\bar{\sigma}_{Bl}$	$\bar{\sigma}_{Bs}$	
N	0.939(19)(4)(2)	0.054(7)(2)(2)	0.020(11)(7)(3)	
Λ	1.108(11)(10)(1)	0.0296(31)(5)(10)	0.138(11)(2)(2)	
\sum	1.185(9)(2)(1)	0.0221(20)(7)(7)	0.176(11)(6)(2)	
[I]	1.321(9)(20)(0)	0.0095(7)(4)(0)	0.236(11)(4)(3)	

$$\bar{\sigma}_{Bq} = (m_q/M_B)\partial M_B/\partial m_q$$

Of particular interest:

Tellerson Pal

$$\label{eq:starses} \begin{split} &\sigma \ commutator \ well \ determined: \sigma_{\pi N} = 51 \ (6) \ (2) \ (2) \ MeV \\ & \text{and strangeness sigma commutator } \underline{small} \\ & m_s \ \partial M_N / \ \partial \ m_s = 18 \ (10) \ (6) \ (3) \ MeV \\ & \text{NOT several 100 MeV } \end{split}$$

Profound Consequences for Dark Matter Searches

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

Additional Comments

- Strangeness content (condensate) is more than an order of magnitude smaller than naively assumed
- Strangeness term usually dominates estimates of dark matter cross section - it should NOT!

(c.f. usual assumption of 1 : 1.49 : Chen 1989)

homas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

ollerson

Strangeness & Electromagnetic Form Factors

Experiment: Need Parity Violation

Theory: Disconnected diagram

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

u^pvalence : QQCD Data Corrected for Full QCD Chiral Coefficients

Lattice data from Zanotti et al. ; Chiral analysis Leinweber et al.

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tefferson G

Thomas Jefferson National Accelerator Facility Page 27

Office of

U.S. DEPARTMENT OF ENERGY

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Pab

Convergence LNA to NLNA Again Excellent (Effect of Decuplet)

Operated by Jefferson Science Associates for the U.S. Department of Energy

State of the Art Magnetic Moments

	QQCD	Valence	Full QCD	Expt.
р	2.69 (16)	2.94 (15)	2.86 (15)	2.79
n	-1.72 (10)	-1.83 (10)	-1.91 (10)	-1.91
Σ+	2.37 (11)	2.61 (10)	2.52 (10)	2.46 (10)
Σ-	-0.95 (05)	-1.08 (05)	-1.17 (05)	-1.16 (03)
Λ	-0.57 (03)	-0.61 (03)	-0.63 (03)	-0.613 (4)
Ξ0	-1.16 (04)	-1.26 (04)	-1.28 (04)	-1.25 (01)
Ξ-	-0.65 (02)	-0.68 (02)	-0.70 (02)	-0.651 (03)
u ^p	1.66 (08)	1.85 (07)	1.85 (07)	1.81 (06)
u ^E	-0.51 (04)	-0.58 (04)	-0.58 (04)	-0.60 (01)

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Pab

Accurate Final Result for G_M^s

1.25 0.12

Office

U.S. DEPARTMENT OF ENERGY

Yields : $G_{M}^{s} = -0.046 \quad 0.019 \ \mu_{N}$

Leinweber et al., (PRL June '05) hep-lat/0406002

Thomas Jefferson National Accelerator Facility

Jefferson C

MIT-Bates & A4 at Mainz

Thomas Jefferson National Accelerator Facility Page 31

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Pab

G0 and HAPPEx at Jlab

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Lab

Exploring the Strangeness Content of the Proton

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson C

Jefferson Lab Today

C

B

-

A

Latest HAPPEx Run : Outstanding Achievement !

Resolution of the Proton Spin Crisis

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson F

Spin Structure Function g₁(x)

N.B. At Q² sufficiently high (>2 GeV²) the dependence on Q² is logarithmic and described by perturbative QCD (scaling)

Thomas Jefferson National Accelerator Facility Page 37

Operated by Jefferson Science Associates for the U.S. Department of Energy

Cefferson C

The EMC "Spin Crisis"

Up to standard pQCD coefficients (series in $\alpha_s(Q^2)$):

19 May 1988

Aachen, CERN, Freiburg, Heidelberg, Lancaster, LAPP (Annecy), Liverpool, Marseille, Mons, Oxford, Rutherford, Sheffield, Turin, Uppsala, Warsaw, Wuppertal, Yale

J. ASHMAN ^a, B. BADELEK ^{b,1}, G. BAUM ^{c,2}, J. BEAUFAYS ^d, C.P. BEE ^c, C BENCHOUK ^f,

(93 authors)

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01 < x < 0.7). The spin-dependent structure function $g_1(x)$ for the proton has been determined and its integral over x found to be $0.114 \pm 0.012 \pm 0.026$, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g_1 for the neutron. These values for the integrals of g_1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

Σ = 14 ± 3 ± 10 % : i.e. 86% of spin of p NOT carried by its quarks

Thomas Jefferson National Accelerator Facility Page 39

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

THE ANOMALOUS GLUON CONTRIBUTION TO POLARIZED LEPTOPRODUCTION

G. ALTARELLI and G.G. ROSS¹

CERN, CH-1211 Geneva 23, Switzerland

Received 29 June 1988

We show that, due to the anomaly, the gluon contribution to the first moment of the polarized proton structure function, as measured in deep inelastic scattering, is not suppressed by a power of the strong coupling evaluated at a large scale. As a result, the EMC result for the first moment of polarized proton electroproduction is consistent with a large quark spin component.

$$\Sigma_{na\"ive} \rightarrow \Sigma_{na\"ive} - N_{f} \alpha_{s} (Q)$$

Fig. 1. Diagrams contributing to a finite mixing of order α_s between g_1^p and the polarized gluon parton density.

QCD evolution $\Rightarrow \alpha_s(Q^2) \Delta G(Q^2)$ does not vanish as $Q^2 \rightarrow \infty$

and polarized gluons would resolve crisis HOW MUCH?

Thomas Jefferson National Accelerator Facility Page 40

Operated by Jefferson Science Associates for the U.S. Department of Energy

(efferson C

Scale of the Gluon Contribution

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

This spurred a tremendous experimental effort

- DIS measurements of spin structure functions of polarized p, d, ³He (and ⁶Li) at SLAC, CERN, Hermes, JLab
 - Direct search for high-p_T hadrons at Hermes, COMPASS, RHIC to directly search for effects of polarized glue in the p

homas Jefferson National Accelerator Facility

 This effort has lasted the past 20 years, with great success

Operated by Jefferson Science Associates for the U.S. Department of Energy

ollerson (

Latest STAR result - Sarsour DNP Oct 07

- NLO pQCD describes inclusive jet cross section at RHIC
 - Within GRSV framework, 2005 results constrain ∆G to less than 65% of the proton spin with 90% confidence
- Significant increase in precision in Run 2006 data provides even stronger constraints on gluon polarization

Latest PHENIX Result: From A_{11} to ΔG

Impact of CLAS Precision Data on Parton Distribution Functions

CLAS precision data more than doubled the data points in the DIS region from 30 years of high energy polarized structure function measurements.

Where is the Spin of the proton?

• Modern data (Hermes & COMPASS) yields: $\Sigma = 0.33 \pm 0.03 \pm 0.05$

(c.f. 0.14 \pm 0.03 \pm 0.10 originally)

- In addition, there is little or no polarized glue
 - COMPASS: $g_1^{D} = 0$ to $x = 10^{-4}$
 - A_{LL} (π^0 and jets) at PHENIX & STAR $\rightarrow \Delta G \sim 0$
 - Hermes, COMPASS and JLab: △G / G small
- Hence: <u>axial anomaly plays at most a small role in</u> <u>explaining the spin crisis</u>
- Return to alternate explanation lost in 1988 in rush to explore the anomaly

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Ancient History of the Spin Crisis

- EMC Spin Paper:
- Brodsky et al. Skyrme:
- Schreiber-Thomas CBM:
- Myhrer-Thomas OGE:

22 Dec 87 - 19 May 88 22 Feb 88 - 19 May 88

17 May 88 - 8 Dec 88 13 June 88 - 1 Sept 88

(neither paper could explain reduction to only 14%!)

• Efremov-Teryaev Anomaly: 25 May 88

Altarelli-Ross Anomaly: 29 June 88 - 29 Sept 88

U.S. DEPARTMENT OF ENERGY

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Jab

One-Gluon-Exchange Correction

Has the effect of further reducing the fraction of spin carried by the quarks in the bag model (naively 0.65) because of lower Dirac component of wave function (/// result in any relativistic model
e.g. recent work of Cloet et al., hep-ph/0708.3246, 0.67 in confining NJL model)

•
$$\Sigma \rightarrow \Sigma - 3G$$
 ; with G \sim 0.05 $\Sigma \rightarrow$ 0.65 - 0.15 = 0.5

Myhrer & Thomas, Phys R ev D38 (1988) Thomas Jefferson National Accelerator Facility

48 Office of Science

(d)

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

OGE Correction for Hyperon β-decay

- All correction terms proportional to $G = \alpha_s$ times bag matrix elements
- Very nicely accounts for deviations from SU(3) symmetry

Table 1. The ratio g_A/g_V in the SU(3) limit from a model calculations compared to experiments. The experimental numbers are from the Particle Data Group [32]

MIT bag gives F = 2B'/3, D = B'

Cefferson C

Yamaguchi et al., Nucl. Phys. C48 (1990) 295

B Office of Science

Thomas Jefferson National Accelerator Facility

The Pion Cloud of the Nucleon

Volume 215, number 1

PHYSICS LETTERS B

8 December 1988

SPIN DEPENDENT STRUCTURE FUNCTIONS IN THE CLOUDY BAG MODEL

A.W. SCHREIBER AND A.W. THOMAS

Department of Physics and Mathematical Physics, University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia

Received 17 May 1988

Tellerson C

We derive expressions for the integrals of the spin dependent structure functions $g_1(x)$ for the proton and the neutron in the context of the cloudy bag model. We find that the neutron contributes 5–10% to the Bjorken sum rule, while there is a corresponding decrease for the proton's contribution. It is difficult to reconcile these results with those reported in a recent experiment.

Thomas Jefferson National Accelerator Facility

Effect of the Pion Cloud

- Probability to find a bare N is Z ~ 70%
- Biggest Fock Component is N $\pi \sim$ 20-25% and 2/3 of time N spin points down

2 Ρ_{Ν π}

• Next biggest is $\Delta \pi \sim$ 5-10%

 To this order (i.e. including terms which yield LNA and NLNA contributions):

• Spin gets renormalized by a factor : Z - 1/3 P_{N π} + 15/9 P_{$\Delta \pi$} \sim 0.75 - 0.8 $\Rightarrow \Sigma = 0.65 \rightarrow 0.49 - 0.52$

7

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson (

Final Result for Quark Spin

 $\Sigma = (Z - P_{N \pi}/3 + 5 P_{\Delta \pi}/3) \times (0.65 - 3 G)$ = (0.7,0.8) × (0.65 - 0.15) = (0.35, 0.40) c.f. Experiment: 0.33 ± 0.03 ± 0.05 · ALL effects, relativity and OGE and the pion cloud swap quark spin for valence orbital angular momentum

and anti-quark orbital angular momentum

(>60% of the spin of the proton)

Myhrer & Thomas, hep-ph/0709.4067

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tefferson Ja

The Balance Sheet – fraction of total spin

	L _{u+ubar}	L _{d+dbar}	Σ
Non-relativistic			1.0
Relativity (e.g. Bag)	0.46	-0.11	0.65
Plus OGE	0.52	-0.02	0.50
Plus pion	0.50	0.12	0.38

At model scale: $L_u + S_u = 0.25 + 0.42 = 0.67 = J_u$: $L_d + S_d = 0.06 - 0.22 = -0.16 = J_d$

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

LHPC Lattice Results

• At first glance shocking : $L^u \sim$ - 0.1 and $L^d \sim$ + 0.1 (c.f. + 0.25 and +0.06 in our "resolution")

• N.B. Disconnected terms missing \rightarrow no anomaly, sea wrong

Figure 16: Nucleon spin decomposition by flavor. Squares denote $\Delta \Sigma^u/2$, diamonds denote $\Delta \Sigma^d/2$, triangles denote L^u , and circles denote L^d . LHPC: hep-lat/0610007

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

Tellerson C

Indeed L_z is not scale invariant – what scale?

- Known since mid-70s (Le Yaouanc et al., Parisi, etc.) that connection between quark models and QCD must be at low-Q²
- This is because momentum fraction carried by quarks is monotonically decreasing with Q²↑ and in models quarks carry nearly all the momentum (used by Glück-Reya to model HERA data to very low x μ² = 0.23 GeV² at LO Phys Lett 359, 205 (1995))
 - e.g. Schreiber et al., PR D42, 2226 (1990) : μ = 0.5 GeV
 - (N.B. Using LO rather than NLO QCD changes μ not the results at 5-10 GeV²)

FIG. 1. $xu_v(x,Q^2) + xd_v(x,Q^2)$ at the model scale $Q^2 = \mu^2$ and at $Q^2 = 10 \text{ GeV}^2$ (solid lines). The dashed and dotted lines correspond to the Duke-Owens and Martin-Roberts-Stirling parametrizations of $xu_v(x,Q^2 = 10 \text{ GeV}^2) + xd_v(x,Q^2 = 10 \text{ GeV}^2)$,

Solution of the Evolution Equations

L^u and L^d both small and cross-over rapidly: AWT, PRL 101 (2008) 102003 - model independent !

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tefferson C

GPDs & Deeply Virtual Exclusive Processes - New Insight into Nucleon Structure

At large Q² : QCD factorization theorem \rightarrow hard exclusive process can be described by 4 transitions (Generalized Parton Distributions) : Vector : H (x, ξ , \dagger) Axial-Vector : H (x, ξ , \dagger) Tensor : E (x, ξ , \dagger) Pseudoscalar : E (x, ξ , \dagger)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Pab

U.S. DEPARTMENT OF ENERGY

Deeply Virtual Exclusive Processes -Kinematics Coverage of the 12 GeV Upgrade

At 12 GeV: e.g. Exclusive ρ^0 with transverse target expect to determine quark orbital angular momentum $2\Delta (Im(AB^*))/\pi$ A ~ (2H^u B ~ (2E^u + A_{UT} ρ^0 $|A|^{2}(1-\xi^{2}) - |B|^{2}(\xi^{2}+t/4m^{2}) - Re(AB^{*})^{2}\xi^{2}$ Ч 0.4 **Asymmetry depends** $Q^2 = 5 GeV^2$ 0.4 linearly on the GPD E, -t = 0.5 GeV ² which enters 0.2 Ji's sum rule. J^u = 0.1 0.2 $J^{d} = 0$ 0 K. Goeke, M.V. Polyakov, M. Vanderhaeghen, 2001 -0.2 HERMES (preliminary)

0.5 X

0.1

0.2

0.3

0.4

Additional Observation

Recall that polarized glue is generated by pQCD evolution

$$-\frac{N_f \,\alpha_s(Q^2)}{2\pi} \Delta G(Q^2) \to -N_f \frac{8\Sigma}{\beta_0^2 t_0}$$

- This yields a correction of order -0.11 from Σ to Σ_{inv} $\Rightarrow \ \Sigma_{inv} \in (0.25, 0.29)$

 $\Rightarrow \Delta s \sim$ -0.04 (primarily through axial anomaly)

Still in excellent agreement with experiment

Operated by Jefferson Science Associates for the U.S. Department of Energy

Cellerson C

Conclusion

- Extremely impressive results for absolute masses of baryon octet using FRR
- σ commutator very accurate: 51 ± 7 MeV
- B_u : B_d ≈ 1 : 1 (*not* 1.49)
- Strangeness σ commutator order of magnitude smaller than usual, naïve SU(3) analysis : 18 ± 12 MeV (c.f. 330 MeV)

Thomas Jefferson National Accelerator Facility

Major importance for dark matter searches

Operated by Jefferson Science Associates for the U.S. Department of Energy

Cellerson C

Conclusion (cont.)

Strange content of N small

— Less than 5% of μ^p and $\langle r^2 \rangle_{ch}^p$

• Theory agrees well but order of magnitude more accurate

Thomas Jefferson National Accelerator Facility

 Major success of QCD : direct insight into "disconnected diagrams"
 analogue of Lamb shift

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Conclusion (cont.)

- Proton spin problem appears to be resolved — relativistic motion, OGE, chiral symmetry
- Large fraction of the spin is carried as quark orbital angular momentum
- Caution not RGI: this inverts L^u and L^d
- Future experiments at JLab, using DVCS should test this quantitatively
- Initial investigations promising

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson C

