The Quest for Solving QCD: Recent Advances on the Lattice

Karl Jansen

- Introduction
- Accelerating the Continuum limit: The examples of Overlap and Twisted Mass Fermions
- Dynamical Quarks: small quark masses and small lattice spacings
 - Breakthrough in Simulation Algorithm
 - Selected Results
 - Some open questions and challenges
- State of the art supercomputers
- Summary

Why Perturbation Theory fails for the Strong Interaction

 situation becomes incredibly complicated

- value of the coupling (expansion parameter) $\alpha_{\rm strong}(1 {\rm fm}) \approx 1$
- \Rightarrow need different ("exact") method
- \Rightarrow has to be non-perturbative

Lattice Gauge Theory had to be invented

 \rightarrow QuantumChromoDynamics

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling. Wilson, Cargese Lecture notes 1976

Lattice Action

 $\mathcal{Z} = \int_{\text{fields}} e^{-S}$

Partition functions (pathintegral) with Boltzmann weight (action) S

 $S = a^4 \sum_x \left\{ \beta \left[1 - \operatorname{Re}(U_{(x,p)}) \right] + \bar{\psi} \left[m_0 + \frac{1}{2} \{ \gamma_\mu (\partial_\mu + \partial_\mu^\star) - a \partial_\mu^\star \partial_\mu \} \right] \psi \right\}$

Physical Observables

expectation value of physical observables ${\cal O}$

$$\underbrace{\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O}e^{-S}}_{\text{fields}}$$

lattice discretization

01011100011100011110011

Monte Carlo Method

 $\langle f(x) \rangle = \int dx f(x) e^{-x^2}$

 \rightarrow importance sampling:

select points $x_i, i = 1, \dots N$ with x_i Gaussian random number

$$\Rightarrow \langle f(x) \rangle \approx \frac{1}{N} \sum_{i} f(x_i)$$

Quantum Field Theory/Statistical Physics:

- sophisticated methods to generate the Boltzmann distribution e^{-S}
- x_i become field configurations
- $\langle . \rangle$ become physical observables

There are dangerous lattice animals

Wilson's Lattice Quantum Chromodynamics

lattice artefacts appear linear in a

- → possibly large lattice artefacts ⇒ need of fine lattice spacings ⇒ large lattices (want $L = N \cdot a = 1$ fm fixed)
- ightarrow simulation costs $\propto 1/a^{6-7}$

present solutions:

- clover-improved Wilson fermions
- maximally twisted Wilson fermions
- staggered fermions
- overlap/domainwall fermions <u>exact</u> (lattice) chiral symmetry

Realizing O(a)-improvement

Continuum lattice QCD action $S = \bar{\Psi} \left[m + \gamma_{\mu} D_{\mu} \right] \Psi$

an axial transformation: $\Psi \to e^{i\omega\gamma_5\tau_3/2}\Psi$, $\bar{\Psi} \to \bar{\Psi}e^{i\omega\gamma_5\tau_3/2}$

changes only the mass term:

 $m \to m e^{i\omega\gamma_5\tau_3} \equiv m' + i\mu\gamma_5\tau_3$, $m = \sqrt{m'^2 + \mu^2}$, $\tan \omega = \mu/m$

 \rightarrow generalized form of continuum action

- $\omega = 0$: standard QCD action
- $\omega = \pi/2$: $S = \overline{\Psi} \left[i\mu\gamma_5\tau_3 + \gamma_\mu D_\mu \right] \Psi$
- general ω : smooth change between both actions

Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

$$D_{\rm tm} = m_{\boldsymbol{q}} + i\boldsymbol{\mu}\tau_3\gamma_5 + \frac{1}{2}\gamma_{\boldsymbol{\mu}}\left[\nabla_{\boldsymbol{\mu}} + \nabla_{\boldsymbol{\mu}}^*\right] - a\frac{1}{2}\nabla_{\boldsymbol{\mu}}^*\nabla_{\boldsymbol{\mu}}$$

quark mass parameter m_q , twisted mass parameter μ

difference to continuum situation: Wilson term not invariant under axial transformations

$$\Psi \to e^{i\omega\gamma_5\tau_3/2}\Psi$$
, $\bar{\Psi} \to \bar{\Psi}e^{i\omega\gamma_5\tau_3/2}$

2-point function: $\left[m_{q} + i\gamma_{\mu}\sin p_{\mu}a + \frac{r}{a}\sum_{\mu}(1 - \cos p_{\mu}a) + i\mu\tau_{3}\gamma_{5}\right]^{-1}$ $\propto (\sin p_{\mu}a)^{2} + \left[m_{q} + \frac{r}{a}\sum_{\mu}(1 - \cos p_{\mu}a)\right]^{2} + \mu^{2}$

$$\lim_{a \to 0} : \quad p_{\mu}^{2} + m_{q}^{2} + \mu^{2} + am_{q} \sum_{\mu} p_{\mu}$$

• setting $m_q = 0$ ($\omega = \pi/2$) : no O(a) lattice artefacts

quark mass is realized by twisted mass term alone

O(a) improvement

Symanzik expansion

$$\langle \mathcal{O} \rangle |_{(m_q,r)} = [\xi(r) + am_q \eta(r)] \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + a\chi(r) \langle \mathcal{O}_1 \rangle |_{m_q}^{\text{cont}}$$
$$\langle \mathcal{O} \rangle |_{(-m_q,-r)} = [\xi(-r) - am_q \eta(-r)] \langle \mathcal{O} \rangle |_{-m_q}^{\text{cont}} + a\chi(-r) \langle \mathcal{O}_1 \rangle |_{-m_q}^{\text{cont}}$$
$$\text{wmetry:} \ R_{\mathbb{F}} \times (r \to -r) \times (m_q \to -m_q) , \ R_{\mathbb{F}} = e^{i\omega\gamma_5\tau^3}$$

Using symmetry: $R_5 \times (r \to -r) \times (m_q \to -m_q)$, $R_5 = e^{i\omega\gamma_5\tau}$

- mass average: $\frac{1}{2} \left[\langle \mathcal{O} \rangle |_{m_q,r} + \langle \mathcal{O} \rangle |_{-m_q,r} \right] = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$
- Wilson average: $\frac{1}{2} \left[\langle \mathcal{O} \rangle |_{m_q,r} + \langle \mathcal{O} \rangle |_{m_q,-r} \right] = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$
- automatic O(a) improvement \rightarrow special case of mass average: $m_q = 0$

$$\Rightarrow \langle \mathcal{O} \rangle |_{m_q = 0, r} = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$$

A demonstration in the free theory

(K. Cichy, J. Gonzales Lopez, A. Kujawa, A. Shindler, K.J.)

free fields: imagine study system for $L[{
m fm}] < \infty$

 $\Rightarrow \quad L = N \cdot a \quad \rightarrow a \rightarrow 0 \leftrightarrow N \rightarrow \infty$

Wilson fermions at $m_q = 0.5$

twisted mass at $m_q=0.0$, $\,\mu_q=0.5$

Overlap fermions: exact lattice chiral symmetry

starting point: Ginsparg-Wilson relation

$$\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D \qquad \Rightarrow D^{-1}\gamma_5 + \gamma_5 D^{-1} = 2a\gamma_5$$

Ginsparg-Wilson relation implies an exact lattice chiral symmetry (Lüscher): for any operator D which satisfies the Ginsparg-Wilson relation, the action

$$S = \psi D\psi$$

is invariant under the transformations

$$\delta\psi = \gamma_5(1 - \frac{1}{2}aD)\psi$$
, $\delta\bar{\psi} = \bar{\psi}(1 - \frac{1}{2}aD)\gamma_5$

 \Rightarrow almost continuum like behaviour of fermions

one <u>local</u> (Hernández, Lüscher, K.J.) solution: overlap operator D_{ov} (Neuberger)

$$D_{\rm ov} = \left[1 - A(A^{\dagger}A)^{-1/2}\right]$$

with $A = 1 + s - D_w(m_q = 0)$; s a tunable parameter, 0 < s < 1

The "No free lunch theorem" A cost comparison

T. Chiarappa, K.J., K. Nagai, M. Papinutto, L. Scorzato,

A. Shindler, C. Urbach, U. Wenger, I. Wetzorke

V, m_{π}	Overlap	Wilson TM	rel. factor
$12^4,720 {\sf Mev}$	48.8(6)	2.6(1)	18.8
$12^4,390{ m Mev}$	142(2)	4.0(1)	35.4
$16^4,720 {\sf Mev}$	225(2)	9.0(2)	25.0
$16^4, 390 {\sf Mev}$	653(6)	17.5(6)	37.3
$16^4, 230 { m Mev}$	1949(22)	22.1(8)	88.6

timings in seconds on Jump

- nevertheless chiral symmetric lattice fermions can be advantageous
 - e.g., Kaon Physics, B_K , $K
 ightarrow \pi\pi$
 - ϵ -regime of chiral perturbation theory
 - topology
 - use in valence sector

Why are fermions so expensive?

need to evaluate

 $\mathcal{Z} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}\left\{D_{\text{lattice}}^{\text{Dirac}}\right\}\psi} \propto \det[D_{\text{lattice}}^{\text{Dirac}}]$

- bosonic representation of determinant

det $[D_{\text{lattice}}^{\text{Dirac}}] \propto \int \mathcal{D}\Phi^{\dagger} \mathcal{D}\Phi e^{-\Phi^{\dagger} \{D_{\text{lattice}}^{-1}\}\Phi}$

- need vector $X = D_{\text{lattice}}^{-1} \Phi$
- solve linear equation $D_{\text{lattice}}X = \Phi$ D_{lattice} matrix of dimension 1million \otimes 1million (however, sparse)
- number of such "inversions": O(100) for one field configuration
- want: O(1000 10000) such field configurations

Cost of fermions

- Situation: a = 0.1 fm, $M_{\pi} \approx 350$ MeV
- orginal Hybrid Monte Carlo Algorithm Duane, Kennedy, Pendleton, Rowet, Phys.Lett.B195:216-222,1987
- application of $D_{\text{lattice}}^{\text{Dirac}}$ on one lattice site: **1400flops**
- 16⁴ lattice: **270Gigaflops**
- 1500 CG iterations, 200 steps: 54Teraflops
- 5000 configurations: 270 Petaflops
- $32^3 \cdot 64$ lattice: **8500Petaflops**

Costs of dynamical fermions simulations, the "Berlin Wall"

see panel discussion in Lattice2001, Berlin, 2001

formula
$$C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-z_{\pi}} (L)^{z_L} (a)^{-z_a}$$

 $z_{\pi} = 6, \ z_L = 5, \ z_a = 7$

"both a 10^8 increase in computing power AND spectacular algorithmic advances before a useful interaction with experiments starts taking place." (Wilson, 1989)

 \Rightarrow need of **Exaflops Computers**

Quenched approximation

CP-PACS collaboration, 2000

Solution of QCD?

 \rightarrow a number of systematic errors

A generic improvement for Wilson type fermions

New variant of HMC algorithm (Urbach, Shindler, Wenger, K.J.) (see also SAP (Lüscher) and RHMC (Clark and Kennedy) algorithms)

- even/odd preconditioning
- (twisted) mass-shift (Hasenbusch trick)
- multiple time steps

- comparable to staggered
- reach small pseudo scalar masses $\approx 300 \text{MeV}$

 $N_f = 2$ dynamical flavours

A computation of F_{π} in <u>2002</u> and <u>now</u> for up and down quarks ($N_f = 2$)

2002

2006

Simulation landscape

European Twisted Mass Collaboration

- Cyprus (Nicosia)
- France (Orsay, Grenoble)
- Italy (Rome I,II,III, Trento)
- Netherlands (Groningen)
- Poland (Poznan)
- Spain (Valencia)
- Switzerland (Zurich)
- United Kingdom (Glasgow, Liverpool)
- Germany (Berlin, Zeuthen, Hamburg, Münster)

European Twisted Mass Collaboration

Fits to chiral perturbation theory formulae

 \Rightarrow excellent description by chiral perturbation theory

 $2aB_0 = 4.99(6), \quad aF = 0.0534(6)$ $a^2 \bar{l_3}^2 \equiv \log(a^2 \Lambda_3^2) = -1.93(10), \quad a^2 \bar{l_4}^2 \equiv \log(a^2 \Lambda_4^2) = -1.06(4)$

Comparison to other determinations

• ETMC: $\bar{l}_3 = 3.65 \pm 0.12$ $\bar{l}_4 = 4.52 \pm 0.06$

• Other estimates Leutwyler, hep-ph/0612112

phenomenological determinations

 $\overline{l}_3 = 2.9 \pm 2.4$ from the mass spectrum of the pseudoscalar octet $\overline{l}_4 = 4.4 \pm 0.2$ from the radius of the scalar

other lattice determinations

 $\overline{l}_3 = 0.8 \pm 2.3$ from MILC (US-UK, staggered) $\overline{l}_3 = 3.0 \pm 0.6$ from lattice CERN group (Wilson) $\overline{l}_4 = 4.3 \pm 0.9$ from f_K/f_{π} pion form factor $\overline{l}_4 = 4.0 \pm 0.6$ from MILC

Narrowing scattering lengths (Leutwyler, private communication)

- Lattice calculations: only statistical errors
 - → systematic effects under systematic inverstigation

- scalar pion radius (ETMC): $< r^2 >= 0.637(26) \text{fm}^2$ Colangelo, Gasser, Leutwyler: $< r^2 >= 0.61(4) \text{fm}^2$
- swave scattering lengths: $a_{00} = 0.220 \pm 0.002, \ a_{20} = -0.0449 \pm 0.0003$

Lattice QCD and experiment

UKQCD, HPQCD MILC Collaborations, 2004

- systematic error from taking fourth root?
- non-local lattice action for a > 0

- question of extrapolation to physical point
- e.g. ρ and Δ are resonances
- need second calculation and check at physical point

The Baryon spectrum towards the physical point from PACS-CS

• so far: only one value of the lattice spacing

 $x_2 = 2Bm/F^2$, $L(\mu) = 16\pi^2 \log (2Bm/\mu^2)$

 f_D a compilation (ETMC)

• perfect match with experiment

 f_{D_s} a compilation (ETMC)

• tension with experiment weakened but remains

- study of topological finite size effects
- ergodicity of simulation

The η' **Mass** (Michael, Urbach, K.J., ETMC)

- mysterious particle
- quark content: mass similar to pion
- $m_\eta \approx 150 \mathrm{MeV}$
- find: $m_\eta \approx 865 \mathrm{MeV}$
- explanation: additional mass of
- purely topological origin

Importance of non-perturbative renormalization

• strange quark mass (tm-example, arXiv:0709.4574)

 $Z_P^{\text{RI-MOM}}(1/a) = 0.39(1)(2) \leftarrow \text{non-perturbative RI-MOM}$ method $Z_P^{\text{BPT}}(1/a) \simeq 0.57(5) \leftarrow \text{one-loop boosted perturbation theory}$

$m_q^{\overline{\mathrm{MS}}}(2\mathrm{GeV})\mathrm{MeV}$	perturbative	non-perturbative
m_s m_s (PACS-CS)	$72 \pm 2 \pm 9$ 72.7 ± 0.8	$105 \pm 3 \pm 9$

• RI-MOM and Schrödinger functional schemes UK expertise Dublin (Sint), Liverpool (Shindler)

Strange quark mass

A comparison to experiment

Universality

no ideal fermion action:

- O(*a*)-*improved Wilson fermions*: breaking of chiral symmetry, non-perturbative operator improvement;
- rooted staggered fermions: taste breaking, non-local lattice action;
- *twisted mass fermions*: breaking of chiral symmetry, isospin breaking;
- *overlap fermion*: expense of simulation;
- *domain wall fermions*: expense of simulation and breaking of chirality;
- *fixed topology*: topological finite size effects

Demonstrating universality

Example of the Schwinger model (N. Christian, K. Nagai, B. Pollakowski, K.J.)

Universality: a challenge for lattice QCD

nucleon mass

nice scaling

pseudo scalar decay constant

no common scaling visible

Morningstar and Peardon

chiral perturbation theory JLQCD collaboration $N_f = 2 + 1 + 1$ flavours

N_f=2+1+1

Kaon and Nucleon mass (ETMC)

 $M_{\rm K}$

 \rightarrow no effect of strange quark

State of the art supercomputers

• BG/P

Blue Gene/P system structure

State of the art supercomputers

• QPACE

based on cell processor3-d torus networklow power consumption 1.5W/Gflop

• Videocards (NVIDIA G80)

CUDA programming language (C extension)

Selection of Supercomputers

- MareNostrum, IBM, Barcelona
 40Teraflops peak performance
- Earth Simulator, NEC, Yokohama, 2002
 40Teraflops peak performance
- BlueGeneP, NIC, FZ-Jülich
 223Teraflops peak performance
- BlueGeneL, IBM, Los Alamos, 367Teraflops peak performance, Nov. 2007 (application area: not specified)
- IBM, Roadrunner, LANL,
 1.2Petaflops peak performance, Top 1
- 2005 Workshop on Zetaflop Computing

remark: often only part of the machines available for basic science, often poor efficiency

Summary

- Progress in solving QCD with lattice techniques
 - O(a)-improved fermion actions
 - dramatic algorithm improvements
 - new supercomputer architectures
- offers possibility to
 - reach continuum limit
 - perform chiral limit
 - control finite volume effects
 - \rightarrow have computed the baryon spectrum
 - \rightarrow have determined low energy constants
 - \rightarrow decay constants
- challenges
 - understand better systematic effects
 - gluebal spectrum, $\chi {\rm PT}$ at the kaon and heavy baryons
 - resonances, scattering processes
 - simulations at physical point

