(Recent) Physics Highlights from the Tevatron

Beate Heinemann

University of California at Berkeley and Lawrence Berkeley National Laboratory UK Theory meeting, Durham, December 2008

Outline

- Testing Particle Production
 - Jets, W's and Z's, top quarks

Electroweak Symmetry Breaking

- W boson and top quark mass
- Higgs boson search

Beyond the Standard Model

Supersymmetry and beyond

Flavour Sector

- Lifetimes
- CP violating phase β_{s}

Conclusions and Outlook

Tevatron Luminosity

Excellent Performance

- Luminosity / week: ~60 pb⁻¹
- Luminosity in 2008 alone: 2 fb⁻¹
- Peak luminosity 3.5 x 10³² cm⁻² s⁻¹
- Data taking efficiency of CDF and DØ: ~85%

Annual Integrated Luminosity

- Significant improvement year by year!
 - Even between 2007 and 2008

Production of Particles

 Cross section measured over 9 orders of magnitude double-differentially in y and p_T (related to x and Q²)

Jet Cross Section: Ratio to Theory

- Data precision higher than pdf uncertainties
 - Data uncertainties between 10% and 25%
 - Due to high precision jet energy scale understanding
 - Data will further constrain pdf's
 - They tend to agree better with MRST2004 than CTEQ6.5
 - In particular sensitive to gluon at high x

Z production

- High precision measurement challenges hard and soft QCD predictions
 - At low $p_T(Z)$: soft non-perturbative effects dominate
 - Important for W boson mass measurement
 - At high $p_T(Z)$: perturbative regime
 - Important for understanding background to new physics searches

- W/Z+jets are important backgrounds:
 - Top production
 - Higgs boson
- Data agree with NLO within ~15%
 - MC models more or less successful

w

222222 q

000000

Diboson Production: WZ,ZZ

- Diboson production
 - Sensitive to trilinear couplings among gauge bosons
 - Direct consequence of SU(2)xU(1) gauge group
- Recent highlights:
 - WZ:
 - 5.9σ observation
 - Cross section: 5.0^{+1.8}-1.6 pb

– ZZ:

- 5.7σ observations
- Cross section: 1.60±0.65 pb
- All diboson measurements in agreement with SM prediction

Summary of Electroweak Cross Section Measurements

11

Evidence at 4.4 σ for WW+WZ \rightarrow Ivjj

- Very similar analysis to Higgs search (see later)
 - Needs to find a peak on a huge (sculpted) background
 - · Great that this has now succeeded
 - Cross section: σ(WW+WZ)=20.2 +/- 4.5 pb
 - in agreement with NLO calculation (16 pb)

Top Quark Production

≥4Jets

0

1Jet

2Jets

3Jets

- Measured cross section consistent with theory
 - Precision ~8%

Single Top Production

- Evidence for single top established by CDF and DØ:
 - CDF: σ =2.2 ± 0.7 pb (V_{tb}=0.88^{+0.13}-0.12)
 - DØ: $\sigma=4.7 \pm 1.3 \text{ pb}$ (V_{tb}=1.31^{+0.25}_{-0.21})
 - Theory: σ =2.86 ± 0.36 pb (V_{tb}=1)

- Very difficult analysis
 - Signal / background small and backgrounds uncertain
 - Important "practice" for Higgs boson: σ (single top) / σ (WH)~10

Electroweak Symmetry Breaking

The Electroweak Precision Data

Precision measurements of

- muon decay constant and $\boldsymbol{\alpha}$
- Z boson properties (LEP,SLD)
- W boson mass (LEP+Tevatron)
- Top quark mass (Tevatron)

W Boson Mass

Ultimate Run 2 precision:
 ~15 MeV

Top Quark Mass

- Rather large pure samples available:
 - 166 events: S/B=4/1
- Perform simultaneous fit for
 - Top quark mass
 - Jet energy scale $(M_W = M_{jj})$
 - · dominant systematic uncertainty

Top Quark Mass Results

Dominant systematic uncertainties:

MC modelling and jet energy calibration for b-jets

M_W , m_{top} and m_{Higgs}

Indirectly: m_H<154 GeV@95%CL</p>

(caveat: is the measured top mass the pole mass?)

Directly (LEP): m_H>114 GeV@95%CL

Higgs Production at the Tevatron

W+Higgs with H→bb

- Search for really small signal on top of difficult backgrounds:
 - Peak in invariant mass of two b-jets not sufficient to discriminate
 - Analyses based on advanced analysis techniques
 - Neural Networks, Boosted Decision trees, etc
- Both collaborations have analyzed nearly 3 fb⁻¹ in for all three modes:
 - − WH→Ivbb, ZH →Ilbb, ZH →vvbb

$H \rightarrow WW^{(*)} \rightarrow I^+I^-vv$

- Main background:
 - WW production
- Higgs mass reconstruction impossible due to two neutrinos in final state
- Make use of spin correlations to suppress WW background:
 - Higgs has spin=0
 - leptons in H \rightarrow WW^(*) \rightarrow I⁺I⁻ $\nu\nu$ are collinear
- Use advanced techniques (NN etc.) to gain further separation power

- Neural Network separates signal from background rather well
 - Data well described in background dominated region
 - No sign of excess in the data
- Data used to set limits on Higgs boson cross section

Higgs Cross Section Limit per Experiment

- Cross Section limits from each experiment
 - M_H=115 GeV: σ_{limit} factor 4.2 (CDF)-5.3 (DØ) above the SM
 - M_H=165 GeV: σ_{limit} factor 1.8 (CDF)-1.7 (DØ) above the SM
 - Note the 1σ downward fluctuation by DØ at 170 GeV

High Mass Higgs Combination

- Higgs excluded at 95% CL at 170 GeV
 - Still debates ongoing about the theoretical cross section value
 - Anastasiou *et al.* (arXiv: 0811.3458) show the theoretical cross section is 10% higher
 - Increasing it by 10% would enlarge the exclusion mass window by up to 5 GeV

Beyond the Standard Model

Supersymmetry (SUSY)

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squarks, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and E_T^{miss}
 - At Tevatron no long cascades to leptons expected:
 - Lepton veto applied
- Strong interaction => large production cross section
 - for M(g) ≈ 300 GeV/c²:
 - 1000 event produced/ fb⁻¹
 - for M(g) ≈ 500 GeV/c²:
 - 1 event produced/ fb⁻¹
 - Relatively little gain expected with more data
 - Need LHC!
- Analysis optimized depending on mass hierarchy

Supersymmetry Parameter Space

NB: up to 10 GeV differences depending on treatment of theoretical cross section uncertainties

3rd generation Squarks

- 3rd generation is special:
 - Masses of one can be very low due to large SM mass
 - Particularly at high tan β
- Search for sbottom quarks from gluino decays
 - 2 b-jets and E_{T}^{miss}

q٢

<u>000</u> g

Trileptons: Another Look for SUSY

- Search for partners of W and Z boson
 - Decaying via leptons
- Signal:
 - 3 leptons and missing $E_{\rm T}$
- Challenges
 - Lepton \boldsymbol{p}_{T} low
 - Tau final states difficult
 - Analysis most sensitive at low $\text{tan}\beta$

The Trilepton Data

- Data consistent with background expectations
 - M(chargino)>140 GeV/c² at 95% confidence level in certain parameter space
 - rather model-dependent though

Exclusion of GUT scale parameters

- Nice interplay of hadron colliders and e⁺e⁻ colliders:
 - Similar sensitivity to same high level theory parameters via very different analyses
 - Tevatron has started to probe beyond LEP in mSUGRA type models

Confusion among Theorists?

[Hitoshi Murayama]

Need to keep our experimental eyes open!

Possible Signatures in Dilepton Mass Spectra

- Resonant production of new particle
 - (Narrow) peak in mass spectrum, e.g. Z', Randall-Sundrum Graviton, RPV sneutrino
- Virtual exchange or KK tower
 - Contact interaction or ADD model

Dielectron and Dimuon Mass Spectra

CDF Run II Preliminary

- Data agree with background prediction
 - Slight excess in CDF ee spectrum at 240 GeV (prob.~0.6%)
 - 50 events on a background of 27
 - No excess seen in dimuon data
 - No recent analysis by DØ available

High Mass dilepton and $\gamma\gamma$

- Anomalous in diphoton or dielectron mass spectrum predicted in
 - Resonance: Z' models (spin 1) and Randall-Sundrum Graviton (spin 2)

Mogoon Y,1

Hard tail: large ED model (ADD)

Flavour Physics

Lifetime of the Λ_b Baryon

- Brand new measurement in fully reconstructed mode
- Consistent with world-average: $\tau(\Lambda_b)/\tau(B^0)=0.922$ +/- 0.039

CP violating Phase: β_s

- Size of angle β_s in unitarity angle quantifies CP violation
 - Measured very precisely at Belle/BaBar in B_d system using $B_0 {\rightarrow} J/\psi K_s^{\ 0}$
- Equivalent measurement in B_s sector
 - Uses B_s→J/ψφ
 - Theoretical prediction:
 - 0.02 (very small, not observable a Tevatron)
- Interference of decays with and without mixing (B_s⁰ ↔ B_s⁰): extract from angular distributions
 - Average lifetime: Γ
 - Lifetime difference between light and heavy state ($\Delta\Gamma$)
 - Phase β_s

b

.**Ι**/Ψ

CP violating Phase: β_s

- Difference between data and SM nearly 2σ in each experiment
 - Combined value 2.2σ
- Will need to watch development with more data

Conclusions and Outlook

• Tevatron, CDF and DØ are operating well

- Tevatron delivered 2 fb⁻¹ in 2008!
- About 4.5 pb⁻¹ of analysis data on tape
- Running guaranteed until summer '09
- Physics results cover broad range:
 - **QCD** thoroughly being tested:
 - Precision between 2 and 50%
 - Higgs boson constraints at 95% CL:
 - Indirect (m_W and m_{top}): m_H<154 GeV/c²
 - Direct searches: $m_H \neq 170 \text{ GeV/c}^2$
 - Searches beyond the Standard Model
 - no sign of new physics yet
 - Flavour Physics
 - Puzzle about Λ_{b} lifetime resolved
 - Interesting fluctuation in phase β_s
- Tevatron also provides valuable experience for LHC
 - Test MC models / QCD calculations
 - Test analysis techniques

Conclusions and Outlook

Tevatron, CDF and DØ are operating well

- Tevatron delivered 2 fb⁻¹ in 2008!
- About 4.5 pb⁻¹ of analysis data on tape
- Running guaranteed until summer '09
- Physics results cover broad range:
 - **QCD** thoroughly being tested:
 - Precision between 2 and 50%
 - Higgs boson constraints at 95% CL:
 - Indirect (m_W and m_{top}): m_H<154 GeV/c²
 - Direct searches: $m_H \neq 170 \text{ GeV/c}^2$
 - Searches beyond the Standard Model
 - no sign of new physics yet
 - Flavour Physics
 - Puzzle about Λ_{b} lifetime resolved
 - Interesting fluctuation in phase β_s
- Tevatron also provides valuable experience for LHC
 - Test MC models / QCD calculations
 - Test analysis techniques

Hopefully either Tevatron or LHC will find something soon!

CDF "Ghosts" I

	Data	Background
N(extra μ)≥0	1.42 x 10 ⁶	1.13 x 10 ⁶
N(extra μ)≥1	1.41 x 10 ⁵	0.94 x 10 ⁵
N(extra μ)≥2	1.02 x 10 ⁴	0.39 x 10 ⁴

- Recent preprint (0810.5357) discusses excess of muons
 - Muons have anomalously high impact parameters:
 - Lifetime: τ≈20 ps (N_{data}=154,000, N_{BG}=69,000)
 - There are extras muons in these events
 - Controversial within CDF (1/3 of default authors withdrew name)

CDF "Ghosts" II

- Unclear if this is due to a signal or a miscalculated background
 - Considered backgrounds due to
 - Muons from
 - b-decays and
 - decay-in-flight (pions/kaons)
 - Punch-through from pions from
 - Primaries
 - Secondaries due to (inelastic) nuclear interactions
 - Pions from secondary decays (e.g. Kshort of Lambda decay)
 - The size of these backgrounds did not account for the ghosts
 - Further studies ongoing in CDF
 - DØ (and maybe HERA also) is having a look as well

Number of bjets

48

CHAMPS: Charged Massive Stable Particles

- Scenario:
 - Escape detector completely
- Experimentally:
 - Search for "muons" that travel at β <<1
 - CDF: Time-Of-Flight detector and drift chamber
 - D0: muon system
 - Reconstruct mass from p and β
- Cross Section Limits

 (for p_T>40 GeV and |η|<1, 0.4<β<0.9)
 - Weakly interacting $(\widetilde{\tau}, \widetilde{\chi}_1^{\pm})$:
 - σ<10 fb at 95% CL
 - Strongly interacting (stop):
 - σ <48 fb at 95% CL
 - Assumes stop stays charged up to muon system with P=43±7%

CDF: m(t̃)>250 GeV DØ: m(χ̃₁⁺)>169-204 GeV

W boson charge asymmetry

- High precision measurement
 - Constrains parton distribution functions: d/\bar{u}
 - Important for measurement of W boson mass

proton

antiproton

Prospects for Observation β_s

Top Quark: Kinematics+Properties

- Kinematic properties, couplings and charge consistent with Standard Model top production so far
 - Precision typically 10%

ν, **q**`

V-A

Spin=1/2

Spin=1/2

H→WW Cross Section Details

- Still debates ongoing about the theoretical cross section value
 - Used NNLO calculation by Catani et al. (JHEP 0307, 028 (2003))
 - With electroweak corrections by Aglietti et al. (hep-ph/0610033)
- Anastasiou, Boughezal and Petriello show (0811.3458) that the cross section increases by 11% due to
 - 6%: better knowledge of the top- and b-loop k-factors
 - 3%: better treatment of HF in the most recent CTEQ and MRST pdf's
 - 2%: new calculations of electroweak effects
- There is also a recent paper by T. Becher et al. (0809.4283): "resummed NNLO"
 - Increases cross section by 13%
- Any help with sorting this out would be very much appreciated!

Diffractive Dijets

