The Future of Lattice (QCD) calculations Christine Davies University of Glasgow

Higgs-Maxwell meeting, February 2009 QCD is a key part of the Standard Model but quark confinement complicates things.

But properties of hadrons calculable from QCD if fully nonperturbative calc. is done can test QCD and determine parameters very accurately.

QCD only tested to 5-10% level at high energies from comparison of e.g. jet phenomena to pert.th.

processes inside hadrons also calculable.

 $\overline{B}_s \rightarrow D_s e^- \nu$ ALEPH $(D_S \rightarrow K^+ K^- \pi^+)$

Compare to exptl rate gives $V_{qq'}$ accurately

RECIPE

Generate sets of gluon fields for
Monte Carlo integrn of Path Integral (inc effect of sea quarks)

• Calculate averaged "hadron correlators" from valence q props.

 $< 0|M^{\dagger}(0)M(t)|0>$

- Fit for masses and simple matrix elements
- Fix m_q and determine a to get physical results

Including u, d and s sea quarks is critical for accurate results, but numerically expensive - particularly light m_{u,d}.

MILC 2008 "ratio plot".

Multiple values of a, and of m_{u,d}. Extrapolate to physical point.

Parameters for calculations now being done. Lots of different formalisms for handling quarks.

The gold-plated meson spectrum - HPQCD 2008.

MESON MASS (GEV)

Energy frontier Future directions Lattice QCD contributes here e.g.

	f_K/f_π	f_K	f_{π}	f_{D_s}/f_D	f_{D_s}	f_D	Δ_s/Δ_d
r_1 uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^2 extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u/d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_s evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_d , QED etc	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total %	0.6	1.3	1.7	0.9	1.3	1.8	1.2

frontier

Complete error budgets now available for lattice calcs

 $\rightarrow \Lambda_{RSM} > \approx 3 \text{TeV}$

 $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.9999(10)$

Tests of SM at sub-percent level will be possible

Sub-percent errors needs (depending on quantity):

- Better than 0.5% determn of the lattice spacing.
- \bullet Lighter $m_{u,d}$ for less chiral extrapoln uncertainty
- Bigger volumes, e.g. (4fm)⁴, to reduce syst. error
- Higher statistics for calcs with a lot of noise.
- Improved pert. and nonpert. normalisation of lattice operators (where required). New methods underway.

"2nd generation" gluon configurations now being made. Include improvements such as:

- $m_u \neq m_d$. Allows electromagnetic effects to be inc. (affect hadron masses at few MeV level). Better m_u , m_d .
- c quarks in the sea. Can check the effect of this.
- Further improved gluon action for lower disc. errors.

What can we achieve in five years?

For calcs required to extract CKM, progress required is clear

process/ latt. calc.	K mixing	$egin{array}{c} K ightarrow \ \pi l \mathbf{v} \ f_+(0) \end{array}$	$egin{aligned} rac{K o l \mathbf{v}}{\pi o l \mathbf{v}} \ & (f_K/f_\pi) \end{aligned}$	$egin{aligned} D, D_s \ o l \mathbf{v} \ (f_{D_{(s)}}) \end{aligned}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{c} B ightarrow \ D, \pi l u \ f_+(q^2) \end{array}$	B_s, B_d mixing	\sqrt{ratio} (ξ)
current lattice error	7% disc.	0.5% chiral	0.6% volume	2% a	6% normln	4-10% stat. chiral normln	6% normln stat.	3% chiral stat.
current exptl error	0.5%	0.2%	0.2%	4%	30%	4%	١%	0.5%
future lattice error	2%	0.2%	0.3%	0.5%	2%	2-4%	3%	١%

+ penguins, further boxes and related calcs.....

Other calculations are harder some need development of new methods

- Masses for excited baryons/mesons, glueballs, hybrids, unstable/mixed particles very challenging, important for nuclear physics expt. (+light nuclei?)
- $K \to \pi\pi$ decays and ε' . Needs two-particle final states to be handled (which can be done in principle here) or better handling of $K \to \pi$ and $K \to 0$ cases.
- Matrix elements involving flavor singlet "disconnected diagrams" e.g. $< N|s\bar{s}|N > , m_{\eta'}$. Very noisy, need high stats.
- Phase diagram of QCD at finite temp. /non-zero baryon density for heavy ion collisions expensive and, at finite µ, lose positive probabilities.

More speculative stuff

BSM discovery at LHC non-perturbative studies of new models

Current small-scale studies are of QCD-like models with e.g. large N_c (string dualities) or N_f (walking technicolor), or simple SUSY models.

Large scale studies will be extremely challenging

BlueGene/P at Argonne - 0.5Pflops

Computers will get more powerful - next scale is exaflops - 10^{18} flops

Will this mean bigger collaborations? or, if configs and software made publicly available, can small groups still thrive?