Exploring the Standard Candle The many faces of $B \rightarrow X_s \gamma$ decay

Matthias Neubert

Cornell University & University of Heidelberg

UK Annual Theory Meeting, Durham – December 19, 2005

References (2004-2005)

- MN: "Renormalization-Group Improved Calculation of the $B \rightarrow X_{s^{\gamma}}$ Branching Ratio" [hep-ph/0408179] \rightarrow EPJC
- MN: "Advanced Predictions for Moments of the $B \rightarrow X_{s\gamma}$ Photon Spectrum" [hep-ph/0506245] \rightarrow PRD
- B. Lange, MN, G. Paz: "Theory of Charmless Inclusive B Decays and the Extraction of |V_{ub}|" [hep-ph/0504071] → PRD
- B. Lange, MN, G. Paz: "A Two-Loop Relation between Inclusive Radiative and Semileptonic B-Decay Spectra" [hep-ph/0508178] → JHEP
- T. Becher, MN: "Toward a NNLO Prediction for the B→X_sγ Decay Rate with a Cut on Photon Energy: I. Two-Loop Result for the Soft Function" [hep-ph/0512208]

Exploring the Standard Candle The many faces of $B \rightarrow X_s \gamma$ decay

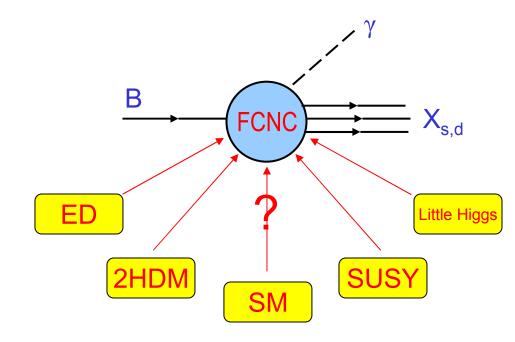
Introduction Soft-collinear factorization Scale separation Results: - $\Gamma(B \rightarrow X_s \gamma)$, New Physics, b-quark mass

- Extraction of |V_{ub}|

Introduction

Inclusive and exclusive $B \rightarrow X_s \gamma$ decays, Cut on photon energy

Rare radiative decays $B \rightarrow X\gamma$



Inclusive decay rate

$$\Gamma(B \to X_s \gamma) = \frac{G_F^2 \alpha}{32\pi^4} |V_{tb}V_{ts}^*|^2 m_b^5 C_{7\gamma}^2$$

$$\times \left\{ 1 + O(\alpha_s) + O(\alpha_s^2) + O\left(\frac{\Lambda_{QCD}^2}{m_b^2}\right) + \ldots \right\}$$

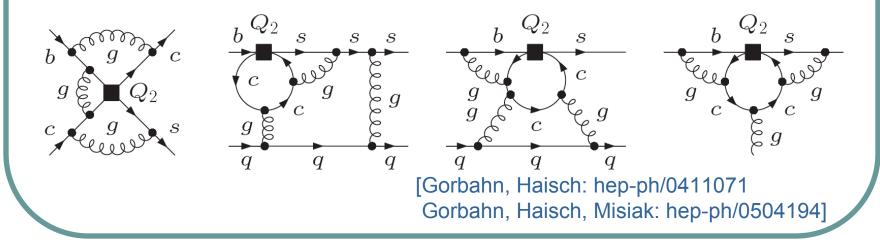
$$\downarrow \gamma$$
Calculable using OPE
$$\text{NLO calculation completed (1991-2001)}$$

$$\text{NNLO calculation in progress (2003-...)}$$

Inclusive decay rate at NNLO

Effective weak Hamiltonian at NNLO

- 3-loop (☺) and 4-loop (¿) anomalous dimensions
- 2-loop (☺) and 3-loop (¿) matching conditions



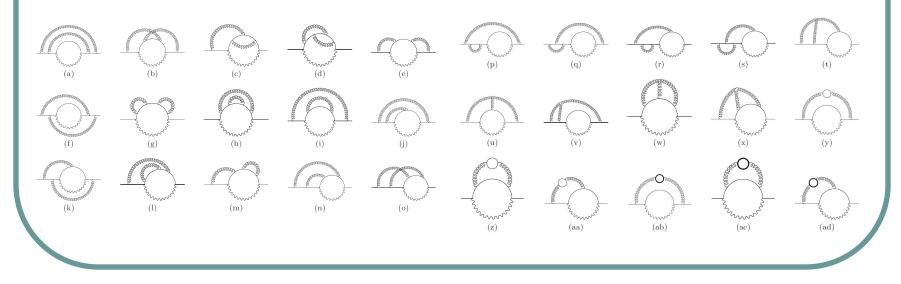
Inclusive decay rate at NNLO

Matrix elements at NNLO

(😳)

2-loop matrix elements of dipole operators

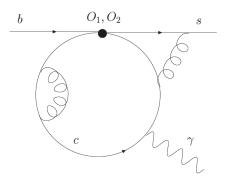
[Melnikov, Mitov: hep-ph/0505097 Blokland, Czarnecki, Misiak, Slusarczyk, Tkachov: hep-ph/0506055]



Inclusive decay rate at NNLO

Matrix elements at NNLO

• 3-loop (•) penguin matrix elements



[Bieri, Greub, Steinhauser: hep-ph/0302051 Asatrian, Greub, Hovhannisyan, Hurth, Poghosyan: hep-ph/0505068]

 One of the hardest calculations in QFT, with many people devoting significant resources

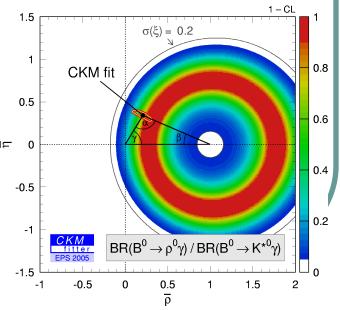
Exclusive decay rates

QCD factorization formula

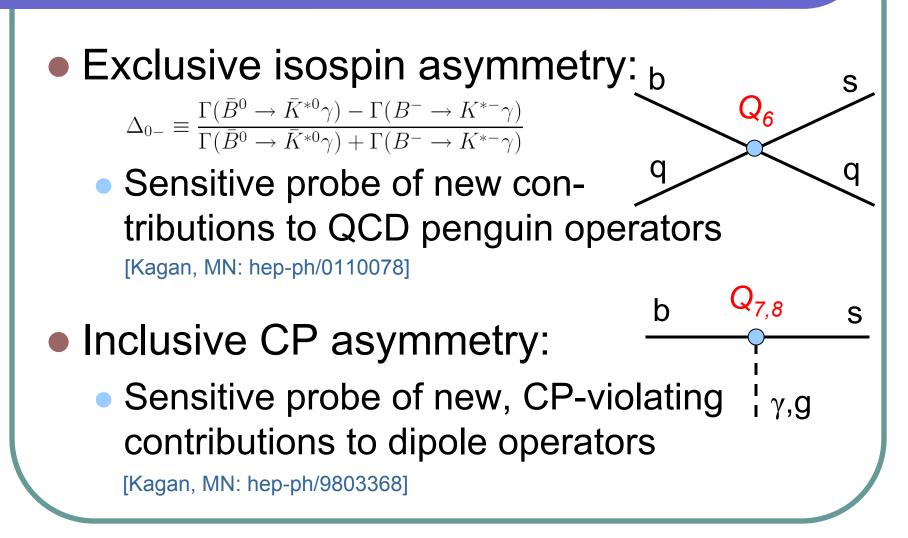
$$\langle V\gamma(\epsilon)|Q_i|\bar{B}\rangle = \left[F^{B\to V}(0)\,T_i^I + \int_0^1 d\xi\,dv\,T_i^{II}(\xi,v)\,\Phi_B(\xi)\,\Phi_V(v)\right]\cdot\epsilon$$

[Beneke, Feldmann, Seidel: hep-ph/0106067 Bosch, Buchalla: hep-ph/0106081 Proof: Becher, Hill, MN: hep-ph/0503263]

- Hadronic uncertainties
- Useful constraint on UT from $\Gamma(B \rightarrow \rho \gamma) / \Gamma(B \rightarrow K^* \gamma)$ $\rightarrow |V_{td} / V_{ts}|$



Other interesting observables

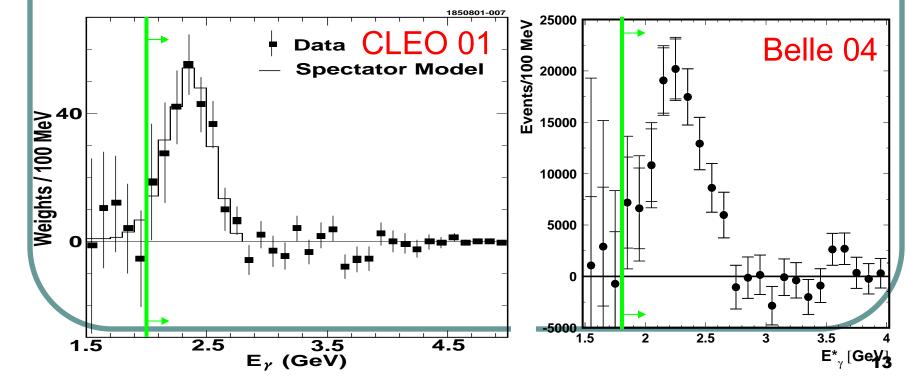


Partially inclusive decay rate

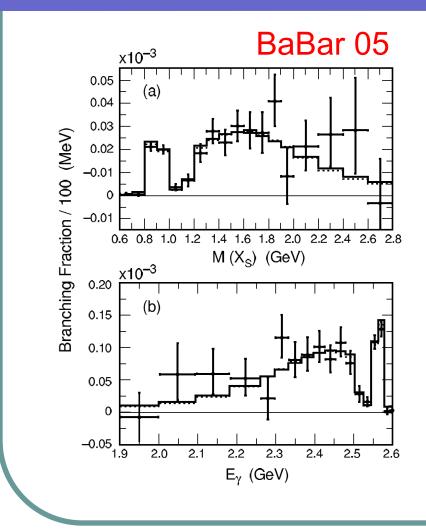
- Total decay rate cannot be measured for various reasons
 - Soft-photon divergence (need combination with Γ(B→X_sg))
 - Need to suppress background from $B \rightarrow \psi X_s$ followed by $\psi \rightarrow X\gamma$ [Misiak: hep-ph/0002007]
 - Experimental signature is high-energy photon (otherwise huge background)

Partially inclusive decay rate

• Restriction to high-energy part of photon spectrum: $E_{\gamma} > E_0 = 1.8$ GeV or larger (in B-meson rest frame)



Partially inclusive decay rate



 Presence of the photon-energy cut leads to significant complications in the theoretical analysis!

[MN: hep-ph/0408179]

Soft-collinear factorization

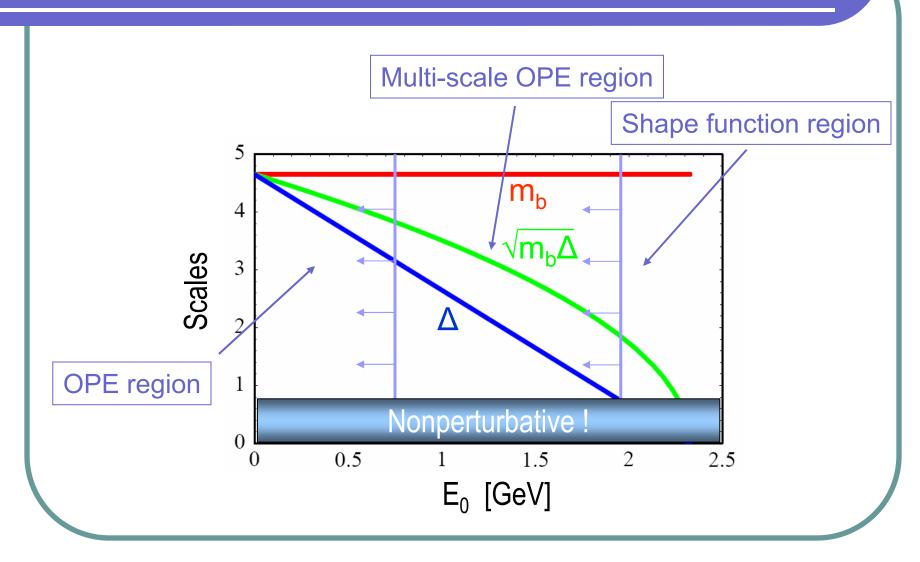
Different scales, Factorization formula, Non-local matrix elements

Relevance of different scales

- Presence of photon-energy cut introduces new scale Δ = m_b-2E₀
- Must distinguish:
 - Hard scale m_b: quantum corrections to effective weak-interaction vertices
 - Intermediate scale √m_b∆: invariant mass of final-state hadronic jet
 - Soft scale Δ: scale at which internal structure of B-meson is probed

√m_h∠

Relevance of different scales



Factorization theorem

 At leading power in Λ_{QCD}/m_b, the decay rate factorizes into a convolution of three objects:

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{G_F^2 \alpha}{2\pi^4} |V_{tb} V_{ts}^*|^2 m_b^2 E_{\gamma}^3$$

$$\times |H_{\gamma}(\mu)|^2 \int_{0}^{M_B - 2E_{\gamma}} d\hat{\omega} m_b J(m_b(M_B - 2E_{\gamma} - \hat{\omega}), \mu) S(\hat{\omega}, \mu) + \dots$$
[MN: hep-ph/9312311
Korchemsky, Sterman: hep-ph/9407344
Proof: Bauer, Pirjol, Stewart: hep-ph/0109045]

q

H

H

O

J

S

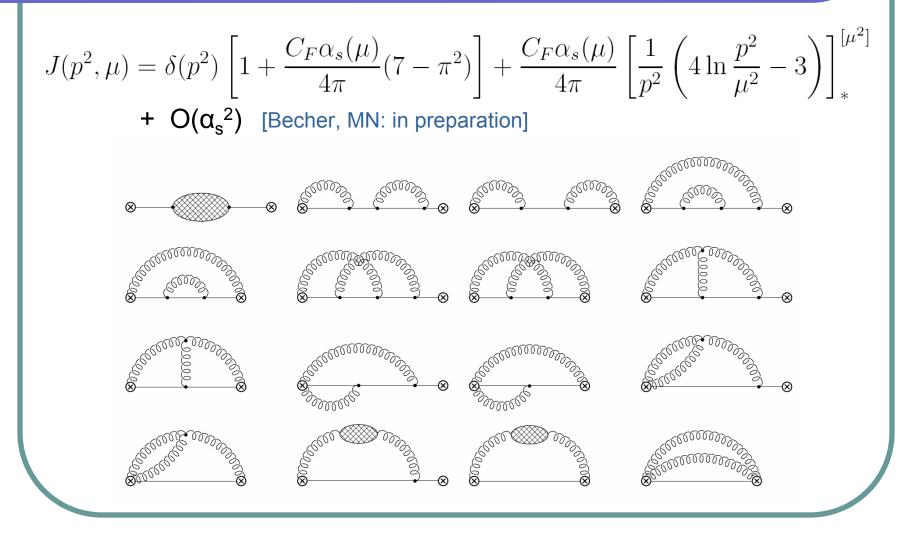
Non-local matrix elements

Jet function J(p²,µ):

- Fourier transform of hard-collinear quark propagator dressed by Wilson line perturbative quantity
- Shape function S(ŵ,μ):

Fourier transform of forward matrix element <B|h_v(0)[0,x]h_v(x)|B> at light-like separation nonperturbative object (parton distribution)

Non-local matrix elements



Hadronic physics

 Shape function integrals can be written as contour integrals in the complex ω-plane:

$$\int_{-\bar{\Lambda}}^{\Delta} d\omega \, S(\omega,\mu) \, f(\omega) \propto \oint_{|\omega|=\Delta} d\omega \, f(\omega) \, \langle \bar{B}(v) | \, \bar{h}_v \frac{1}{\omega + in \cdot D + i\epsilon} \, h_v \, |\bar{B}(v) \rangle$$

- For sufficiently large Δ, right-hand side can expand in *local* operators
- Expansion in $(\Lambda_{QCD}/\Delta)^n$ and $\alpha_s(\Delta) \rightarrow$ not a heavy-quark expansion

Scale separation

Evolution equations, Exact solutions

Evolution equations

• Use RGEs to disentangle contributions associated with: $\frac{d\Gamma}{dE_{\gamma}} = \frac{G_F^2 \alpha}{2\pi^4} |V_{tb}V_{ts}^*|^2 m_b^2 E_{\gamma}^3$

 $\times |H_{\gamma}(\mu)|^2 \int_{\hat{\alpha}}^{M_B-2E_{\gamma}} d\hat{\omega} \, m_b \, J(m_b(M_B-2E_{\gamma}-\hat{\omega}),\mu) \, S(\hat{\omega},\mu) + \dots$

Hard scale µ_h ~ m_b

Intermediate scale
$$\mu_i \sim \sqrt{m_b \Delta}$$

- Soft scale $\mu_0 \sim \Delta$
- Set µ=µ_i in factorization formula and evolve hard and soft functions to the hard and soft scales, respectively

Evolution equations

$$\frac{d}{d \ln \mu} H_{\gamma}(\mu) = \begin{bmatrix} -\Gamma_{c}(\alpha_{s}) \ln \frac{\mu}{m_{b}} + \gamma_{J}(\alpha_{s}) \end{bmatrix} H_{\gamma}(\mu)$$
Sudakov logarithms
$$\frac{d}{d \ln \mu} S(\hat{\omega}, \mu) = \begin{bmatrix} 2\Gamma_{c}(\alpha_{s}) \ln \frac{\mu}{\hat{\omega}} - 2\gamma(\alpha_{s}) \end{bmatrix} S(\hat{\omega}, \mu)$$

$$+ 2\Gamma_{c} \int_{0}^{\hat{\omega}} d\hat{\omega}' \frac{S(\hat{\omega}', \mu) - S(\hat{\omega}, \mu)}{\hat{\omega} - \hat{\omega}'}$$
Anomalous dimensions: [Korchemsky, Radyushkin: 1987]
$$\Gamma_{c}(\alpha_{s}) = 0.424\alpha_{s} + 0.271\alpha_{s}^{2} + 0.216\alpha_{s}^{3} + \dots$$
Moch, Vermaseren, Vogt: hep-ph/0403192]
$$\gamma_{J}(\alpha_{s}) = -0.531\alpha_{s} - 0.200\alpha_{s}^{2} + \dots$$
 [MN: hep-ph/0408179]

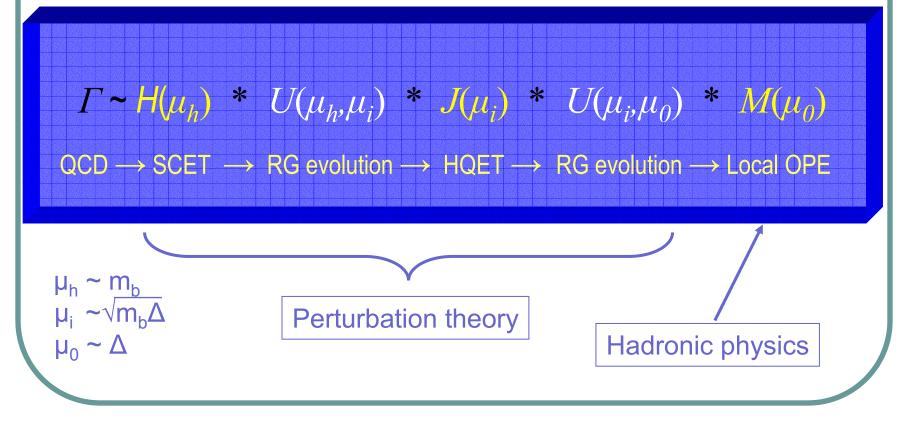
 $\gamma(\alpha_s) = -0.212\alpha_s - 0.389\alpha_s^2 + \dots$ [Korchemsky, Marchesini: hep-ph/9210281 Gardi: hep-ph/0501257]

Exact solutions

$$|H_{\gamma}(\mu_{i})|^{2} = U_{1}(\mu_{h}, \mu_{i}) |H_{\gamma}(\mu_{h})|^{2}$$

$$S(\hat{\omega}, \mu_{i}) = U_{2}(\mu_{i}, \mu_{0}) \frac{e^{-\gamma_{E}\eta}}{\Gamma(\eta)} \int_{0}^{\hat{\omega}} d\hat{\omega}' \frac{S(\hat{\omega}', \mu_{0})}{\mu_{0}^{\eta}(\hat{\omega} - \hat{\omega}')^{1-\eta}}$$
• With:
$$\eta = 2 \int_{\mu_{0}}^{\mu_{i}} \frac{d\mu}{\mu} \Gamma_{c}[\alpha_{s}(\mu)]$$

$$v_{1} = \int_{\infty}^{\mu_{i}} \frac{d\mu}{\omega} \int_{\infty}^{\infty} \frac{d\mu$$



• Perform triple integral exactly: [MN: hep-ph/0506245]

$$\Gamma_{\text{OPE}}(\Delta) = \frac{G_F^2 \alpha}{32\pi^4} |V_{tb}V_{ts}^*|^2 m_b^3 \overline{m}_b^2(\mu_h) |H_{\gamma}(\mu_h)|^2 U_1(\mu_h, \mu_i) U_2(\mu_i, \mu_0)$$

$$\times \quad \tilde{j} \left(\ln \frac{m_b \mu_0}{\mu_i^2} + \partial_{\eta}, \mu_i \right) \tilde{s} (\partial_{\eta}, \mu_0) \frac{e^{-\gamma_E \eta}}{\Gamma(1+\eta)} \left(\frac{\Delta}{\mu_0} \right)^{\eta} \left[1 - \frac{\eta(1-\eta)}{6} \frac{\mu_{\pi}^2}{\Delta^2} + \dots \right]$$
Scales:
$$\mu_h \sim m_b$$

$$\mu_i \sim \sqrt{m_b} \Delta$$

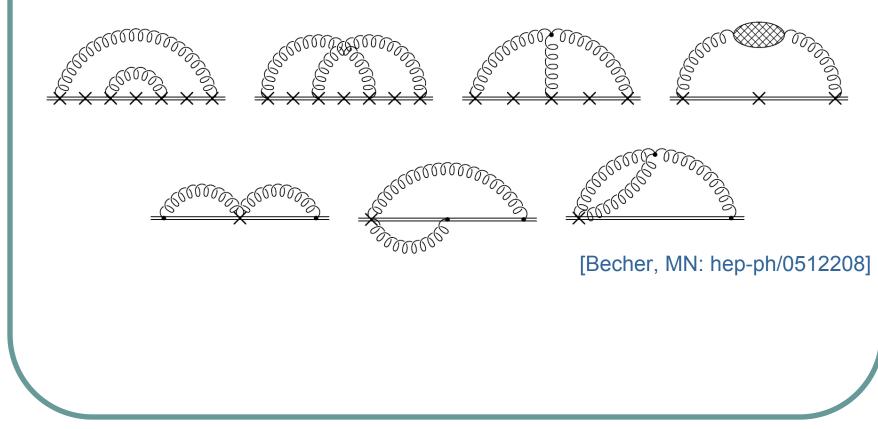
$$\mu_0 \sim \Delta$$
Kinetic-energy parameter

 The jet and soft functions, j and s, are polynomials of their arguments and are derived from integrals of the original jet and shape functions (J and S): [MN: hep-ph/0506245]

$$\begin{split} \widetilde{s}(L,\mu) &= 1 + \left(-0.873 - 0.424L - 0.424L^2\right)\alpha_s \\ &+ \left(-0.603 + 0.750L + 0.471L^2 + 0.368L^3 + 0.090L^4\right)\alpha_s^2 + \dots \\ \widetilde{j}(L,\mu) &= 1 + \left(0.045 - 0.318L + 0.212L^2\right)\alpha_s \\ &+ \left(\dots + 0.145L + 0.301L^2 - 0.114L^3 + 0.023L^4\right)\alpha_s^2 + \dots \\ & \text{[Becher, MN: hep-ph/0512208]} \end{split}$$

work in progress

• Two-loop calculation of soft function:



Results

Partial decay rate, Implications for New Physics, Determination of m_b

Partial $B \rightarrow X_s \gamma$ branching ratio

• Theoretical calculation with a cut at $E_0 = 1.8 \text{GeV} (\text{NLO})$:

 $Br(1.8GeV) = (3.30 \pm 0.33[pert] \pm 0.17[pars]) \cdot 10^{-4}$

[MN: hep-ph/0408179]

- Significant reduction of perturbative error expected at NNLO
- Experiment (Belle 2004):

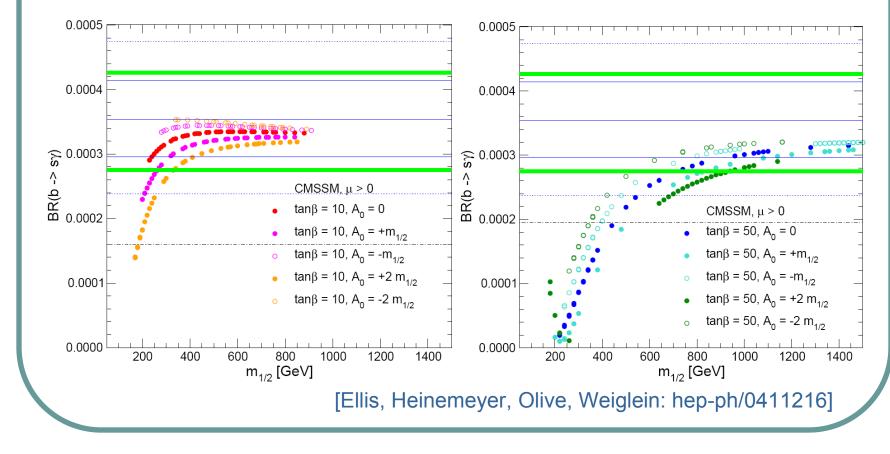
 $Br(1.8GeV) = (3.38 \pm 0.30[stat] \pm 0.28[syst]) \cdot 10^{-4}$

Implications for New Physics

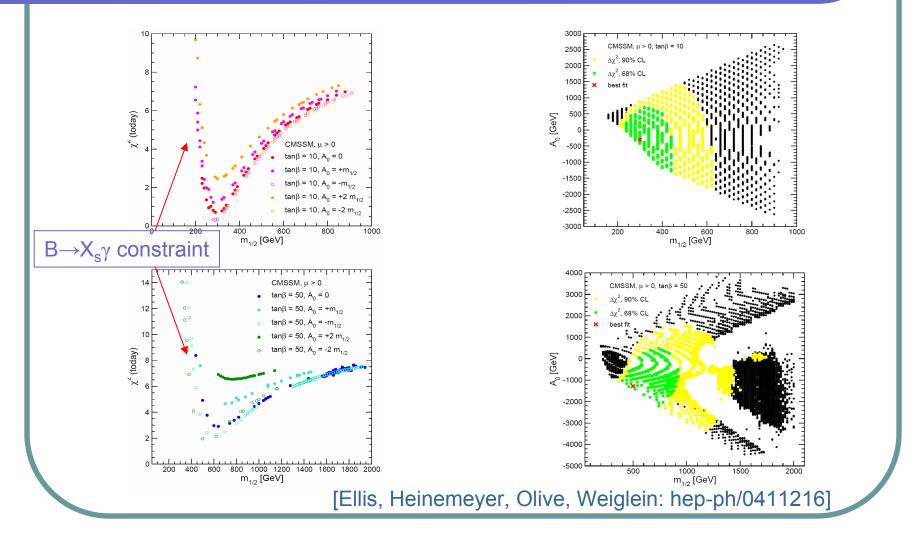
- Increased theory errors and improved agreement with experiment weaken constraints on parameter space of New Physics models!
- E.g., type-II two-Higgs doublet model:
 m(H+) > 200 GeV (at 95% CL) (compared with previous bound of 500 GeV)

Implications for New Physics

Bounds on CMSSM parameters:



Implications for New Physics



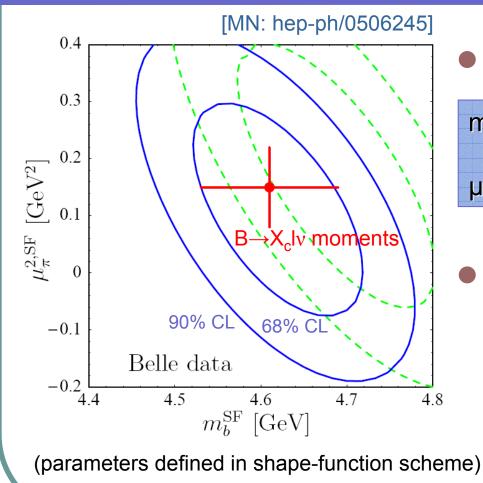
Moments of the photon spectrum

- Marvelous QCD laboratory
- Extraction of heavy-quark parameters (m_b, μ_{π}^2) with exquisite precision
- NNLO accuracy already achieved for $\langle E_{\gamma} \rangle$ and $\langle E_{\gamma}^2 \rangle \langle E_{\gamma} \rangle^2$:
 - Full two-loop corrections (+ 3-loop running)
 - Same accuracy for leading power corrections ~(Λ_{QCD}/Δ)²; fixed-order results for 1/m_b terms

Predictions for moments

	O(1)	O(1/m _b)	O(1/m _b ²)
Perturbation Theory	Complete resummation at NNLO	α_s^2	α_s^2
Hadronic Parameters	m _b , μ _π ²	μ_{π}^2 ρ_D^3 , ρ_{LS}^3	$ ho_D{}^3$, $ ho_{LS}{}^3$

Fit to Belle data ($E_0 = 1.8 \text{ GeV}$)



• Fit results:

$$m_b = (4.62 \pm 0.10_{exp} \pm 0.03_{th}) \text{ GeV}$$

 $\mu_{\pi}^2 = (0.11 \pm 0.19_{exp} \pm 0.08_{th}) \text{ GeV}^2$

• Combined results $(B \rightarrow X_s \gamma \text{ and } B \rightarrow X_c I_v)$:

 $m_b = (4.61 \pm 0.06) \text{ GeV}$ $\mu_{\pi}^2 = (0.15 \pm 0.07) \text{ GeV}^2$

Fit to Belle data ($E_0 = 1.8 \text{ GeV}$)

- Theoretically, the most precise extraction of m_b to date (0.7% accuracy!)
- Translation to MS scheme (2 loops):

 $\overline{m}_{b}(\overline{m}_{b}) = (4.23 \pm 0.05) \text{ GeV}$

• Compare with extractions from Υ spectrum (sum rules and lattice) :

 $\overline{m}_{b}(\overline{m}_{b}) = (4.20 \pm 0.09) \text{ GeV}$ = (4.2 ± 0.1 ± 0.1) GeV

[Corcella, Hoang: hep-ph/0212297] [Lattice compilation: Sachrajda for PDG]

$|V_{ub}|$ from $B \rightarrow X_u | v$ Decay

Factorization for inclusive semileptonic decay spectra

SM

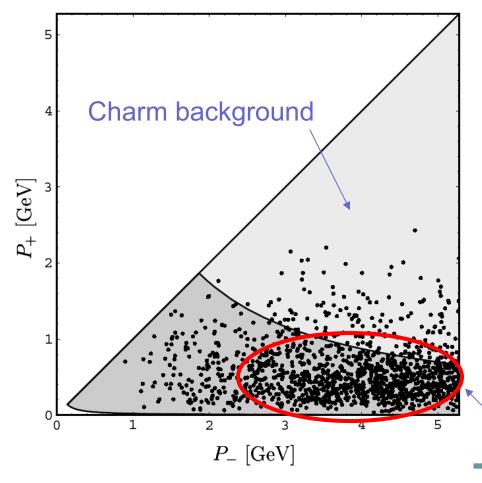
Β

ν

X

39

Inclusive semileptonic decays



- Factorization theorem analogous to B→X_sγ
- Hadronic phase space is most transparent in the variables P_∓=E_x±P_x
- In practice, Δ=P₊- Λ is always of order Λ_{QCD} for cuts eliminating the charm background

Shape-function region

Strategy

- Exploit universality of shape function
- Extract shape function in $B \rightarrow X_s \gamma$ (fit to photon spectrum), then predict arbitrary distributions in $B \rightarrow X_u I \nu$ decay [Lange, MN, Paz: hep-ph/0504071]
- Functional form of fitting function constrained by model-independent moment relations

> Knowledge of m_b and μ_{π}^2 helps!

 Variant: construct "shape-function independent relations" between spectra (equivalent)

[Lange, MN, Paz: hep-ph/0508178]

Results for various cuts

1					1		-
	$m_b \; [{ m GeV}]$	4.50	4.55	4.60	4.65	4.70	Theory Error
$M_X \le M_D$	a	9.5	8.8	8.2	7.7	7.3	70/
Eff = 84%	Functional Form	1.4%	1.1%	0.8%	0.5%	0.4%	7%
$M_X \le 1.7 \mathrm{GeV}$	a	12.5	11.5	10.5	9.7	8.9	7%
Eff = 75%	Functional Form	2.9%	2.6%	2.2%	1.9%	1.6%	1 70
$M_X \le 1.7 \mathrm{GeV}$	a	10.3	9.8	9.3	9.0	8.7	10%
$q^2 \ge 8 \mathrm{GeV^2}$ 35%	Functional Form	2.0%	1.7%	1.5%	1.4%	1.4%	1070
$q^2 \ge (M_B - M_D)^2$	a	11.4	11.1	10.9	10.8	10.6	150/
Eff = 18%	Functional Form	5.0%	4.4%	4.0%	3.6%	3.2%	15%
$P_+ \le M_D^2/M_B$	a	16.7	15.0	13.6	12.2	11.1	7%
Eff = 65%	Functional Form	5.3%	4.8%	4.4%	4.0%	3.6%	/ /0
$E_l \ge 2.2 \mathrm{GeV}$	a	22.6	21.0	19.7	18.5	17.4	19%
Eff = 11%	Functional Form	16.2%	13.1%	11.0%	9.3%	7.9%	1370

Rate $\Gamma \sim (m_b)^a$

[Lange, MN, Paz: hep-ph/0504071]

Results for various cuts

• Different determinations now consistent:

	nominal f_u	$ V_{ub} \times 10^3$
*CLEO [79] $E_e > 2.1 \text{GeV}$	0.19	$4.02 \pm 0.47 \pm 0.35$
*BABAR [82] $E_e, s_{\rm h}^{\rm max}$	0.19	$4.06 \pm 0.27 \pm 0.36$
*BABAR [81] $E_e > 2.0 \text{GeV}$	0.26	$4.23 \pm 0.27 \pm 0.31$
*BELLE [80] $E_e > 1.9 \mathrm{GeV}$	0.34	$4.82 \pm 0.45 \pm 0.31$
*BABAR [86] M_X/q^2	0.34	$4.76 \pm 0.34 \pm 0.32$
*BELLE [87] M_X/q^2	0.34	$4.38 \pm 0.46 \pm 0.30$
BELLE [85] M_X/q^2	0.34	$4.68 \pm 0.37 \pm 0.32$
BELLE [85] $P_{+} < 0.66 \text{GeV}$	0.57	$4.14 \pm 0.35 \pm 0.29$
*BELLE [85] $M_X < 1.7 \text{GeV}$	0.66	$4.08 \pm 0.27 \pm 0.25$
Average of *		$4.38 \pm 0.19 \pm 0.27$
$\chi^2 = 5.9/6, \text{ CL}=0.43$		

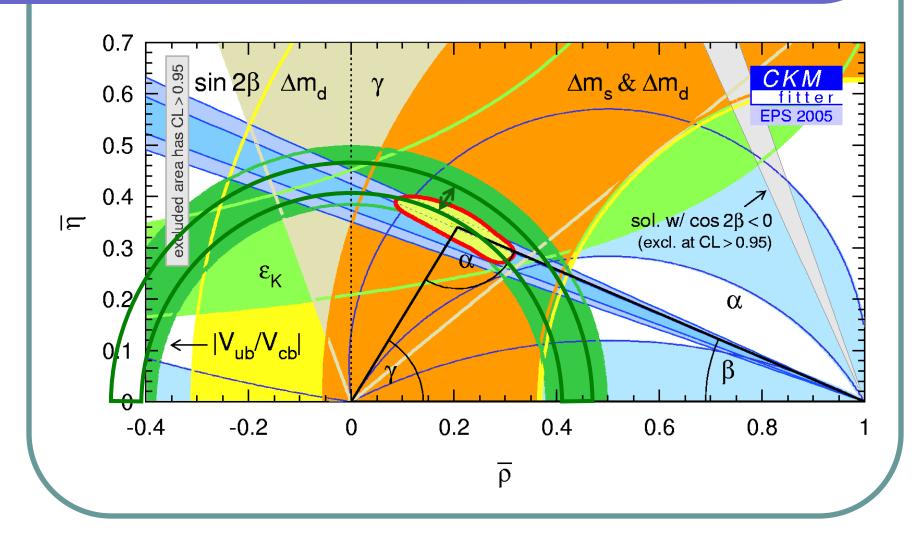
Combined result

- Theory error on |V_{ub}| is 5-10% for several different cuts (10% now conservative seemed unrealistic only a few years ago)
- Average of different extractions gives $|V_{ub}|$ with a *total* error of 7%:

$$|V_{ub}| = (4.38 \pm 0.33) \cdot 10^{-3}$$

Needed to match the precision of sin2β

Impact of precise |V_{ub}|



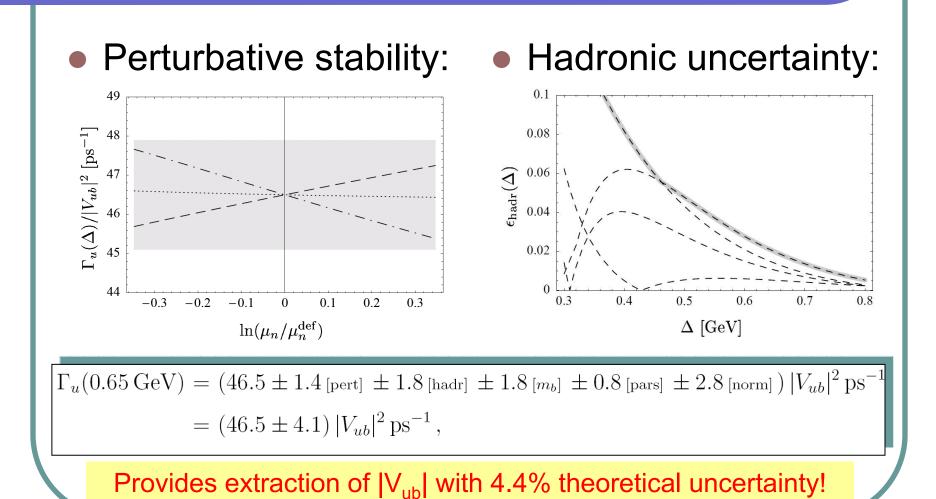
Shape-function free relations

• Example for
$$P_+ = E_X - P_X$$
 spectrum:

$$\Gamma_u(\Delta) = \underbrace{\int_0^{\Delta} dP_+ \frac{d\Gamma_u}{dP_+}}_{\text{exp. input}} = |V_{ub}|^2 \int_0^{\Delta} dP_+ \underbrace{W(\Delta, P_+)}_{\text{theory}} \underbrace{\frac{1}{\sum_{s \in E_*} \frac{d\Gamma_s}{dP_+}}_{exp. input}$$

- Weight function is perturbatively calculable and *independent* of soft scale
- Small hadronic uncertainties enter at order 1/m_b only [Lange, MN, Paz: hep-ph/0508178]

Shape-function free relations



Conclusions

Summary

- $B \rightarrow X_s \gamma$ decay remains one of the most sensitive probes of New Physics
- Strong motivation for NNLO calculation in Standard Model (many people involved!)
- Important to disentangle hard and soft effects using factorization and resummation

Summary

- Many applications besides New Physics searches:
 - Most precise determination of b-quark mass
 - Most precise determination of |V_{ub}|

$$\overline{m}_{b}(\overline{m}_{b}) = (4.23 \pm 0.05) \text{ GeV}$$

 $|V_{ub}| = (4.38 \pm 0.33) \cdot 10^{-3}$

Substantial advances in a challenging field !