Results from the B factories Steve Playfer, University of Edinburgh Annual Theory Meeting Durham, December 19th 2005

- Rough guide to B-factories for theorists
- How the CKM unitarity triangle was measured
- The search for hints of new physics in B decays
- What happens next?

Apologies for omitting spectroscopy, τ decays, charm physics ... BaBar/Belle have published >300 papers in last 4 years

KEK-B and PEP-II

8 GeV e^- on 3.5 GeV e^+ Peak Luminosity 1.6×10^{34} 9 GeV e^- on 3.1 GeV e^+ Peak Luminosity 1.0×10^{34}

The Belle detector looks very similar!

Both experiments expect to accumulate $1ab^{-1}$ by 2008

CKM Sector - before and after

PDG 2000 Sides of triangle only: ϵ from K^0 system V_{td} from B^0 mixing V_{ub} from $b \rightarrow u\ell\nu$

HFAG 2005

Many more measurements from B decays: Angles of triangle α , β and γ are measured as well

 \Rightarrow Asymmetric energy boosts *B* mesons along beam axis Makes time-dependent CP asymmetry measurements possible!

CP violation in B decays

- CP violation from mixing alone is small: $|\frac{q}{p}| \neq 1$ equivalent to ϵ in K^0 system
- Direct CP violation requires two different weak and strong phases: |^{A/A}| ≠ 1 equivalent to ε' in K⁰ system
- Time dependent CP violation can occur via interference between mixing and decay: $Im(\lambda) = Im(\frac{q}{p}\frac{\bar{A}}{A}) \neq 0$ This is large in the B^0 system!

For a single decay amplitude $|\lambda| = 1$, $S = \text{Im}[\lambda]$, C=0

 $\alpha - \alpha_{eff}$ from isospin analysis of $B \to \pi \pi$ Gronau & London (1990) $S(\pi \pi) = \sin(2\alpha_{eff})$

$$C(\pi\pi) = -A_{CP} \propto \sin\delta$$

No penguins:

$$C = 0, \ \alpha = \alpha_{eff}$$

Measurement	BaBar	Belle
$BF(\pi^+\pi^-) \times 10^{-6}$	$5.5\pm0.4\pm0.3$	$4.4\pm0.6\pm0.3$
$BF(\pi^+\pi^0) \times 10^{-6}$	$5.8\pm0.6\pm0.4$	$5.0\pm1.2\pm0.5$
$BF(\pi^0\pi^0) \times 10^{-6}$	$1.2\pm0.3\pm0.1$	$2.3\pm0.5\pm0.3$
$S(\pi^+\pi^-)$	$-0.30 \pm 0.17 \pm 0.03$	$-0.67 \pm 0.16 \pm 0.06$
$C(\pi^+\pi^-)$	$-0.09 \pm 0.15 \pm 0.04$	$-0.56 \pm 0.12 \pm 0.06$
$C(\pi^+\pi^0)$	$-0.01 \pm 0.10 \pm 0.02$	$+0.02 \pm 0.08 \pm 0.01$
$C(\pi^0\pi^0)$	$+0.12 \pm 0.56 \pm 0.06$	$+0.44 \pm 0.53 \pm 0.17$

 α from isospin analysis of $B\to\rho\rho$

There are some advantages to using $\rho\rho$:

- $BF(\rho^0\rho^0) \ll BF(\rho^+\rho^-)$ so penguins are small
- $B^0 \to \rho^+ \rho^-$ is > 95% longitudinally polarized

Measurement	BaBar	Belle
$BF(\rho^+\rho^-) \times 10^{-6}$	$23\pm2\pm2$	$29 \pm 5 \pm 4$
$BF(\rho^+\rho^0) \times 10^{-6}$	$23\pm 6\pm 6$	$32\pm7\pm6$
$BF(\rho^0\rho^0)\times 10^{-6}$	< 1.1	
$S(\rho^+\rho^-)$	$-0.33 \pm 0.24 \pm 0.11$	$+0.09 \pm 0.42 \pm 0.08$
$C(\rho^+\rho^-)$	$-0.03 \pm 0.18 \pm 0.09$	$0.00 \pm 0.30 \pm 0.10$
$C(\rho^+\rho^0)$	$-0.19 \pm 0.23 \pm 0.03$	$0.00 \pm 0.22 \pm 0.03$

Eventually can measure $S(\rho^0 \rho^0)$ as well as $C(\rho^0 \rho^0)$

Dalitz analysis of $B \to \pi \rho$

Do a time-dependent analysis of the $\pi^+\pi^-\pi^0$ Dalitz plot Snyder & Quinn (1993)

 $A_{3\pi} = f_+ A^+ + f_- A^- + f_0 A^0$ where + - 0 is the ρ charge

Sensitivity is in interference regions

$$A_{3\pi}(\Delta t)|^{2} \propto |A_{3\pi}|^{2} + |\bar{A}_{3\pi}|^{2}$$

$$\pm (|A_{3\pi}|^{2} - |\bar{A}_{3\pi}|^{2})\cos(\Delta m_{d}\Delta t) \pm 2Im[\bar{A}_{3\pi}A_{3\pi}]\sin(\Delta m_{d}\Delta t)$$

Summary of α measurements WA $\cdots B \rightarrow \pi\pi$ fitter 1.2 IP 2005 $\cdots \quad B \mathop{\rightarrow} \rho \pi$ Combined Combination of all $\cdots B \to \rho \rho$ ⊢ CKM fit three modes gives 1 the best constraint: 0.8 CL 0.6 $\alpha = (99^{+12}_{-9})^{\circ}$ 0.4 0.2 0 20 40 60 80 100 120 140 160 180 0 Agrees with CKM fit (deg) using other measurements α

Measuring γ with $B \to D^{(*)} K^{(*)}$

All methods use interference between tree diagrams $b \to u(s\bar{c})$ and $b \to c(s\bar{u})$. The ratio of the diagrams r_B depends on the method.

- GLW method: $B^- \to D_{CP}K^-$ with $D_{CP} \to f_{CP}$ Large rate but small interference because $r_B \ll 1$
- ADS method: $B^- \to D^0 K^-$, $D^0 \to K^+ \pi^-$ (DCS) and $B^- \to \overline{D}{}^0 K^-$, $\overline{D}{}^0 \to K^+ \pi^-$ (Cabibbo-favoured) Interference is large but DCS rate is small
- Dalitz method: $B^- \to D^0 K^-$, $D^0 \to K_s \pi^+ \pi^-$ Interference term comes from D^0 Dalitz plot analysis Errors are very sensitive to value of r_B : BaBar $r_B = 0.12 \pm 0.08 \pm 0.05$ Belle $r_B = 0.21 \pm 0.08 \pm 0.05$

Measurements of $b \to c \ell \nu$ Decays

- Inclusive $b \to c \ell \nu$ using one reconstructed B decay as a tag, and looking for lepton from other B
 - Measure $BF(B \to \ell) = 10.95 \pm 0.15\%$
 - Moments of lepton energy and hadronic mass spectra
- Exclusive $B \to D^{(*)} \ell \nu$
 - Measure BFs as a function of recoil
 - Determine shape of Isgur-Wise function
 - Measure form factors
 - V_{cb} from zero-recoil point

Heavy Quark parameters from $b \to c \ell \nu$

Remarkable progress in determining quark masses, non-perturbative QCD parameters and V_{cb} using the heavy quark Operator Product Expansion (HQE)

Fit hadronic and leptonic moments in inclusive $b\to c\ell\nu$ decays

$$\begin{aligned} |V_{cb}| &= (41.4 \pm 0.4(exp) \pm 0.4(HQE) \pm 0.6(theo)) \times 10^{-3} \\ m_b &= 4.61 \pm 0.05(exp) \pm 0.04(HQE) \pm 0.02(\alpha_s)GeV \\ m_c &= 1.18 \pm 0.07(exp) \pm 0.06(HQE) \pm 0.02(\alpha_s)GeV \\ \mu_{\pi^2} &= 0.45 \pm 0.04(exp) \pm 0.04(HQE) \pm 0.02(\alpha_s)GeV^2 \\ \mu_{g^2} &= 0.27 \pm 0.06(exp) \pm 0.03(HQE) \pm 0.01(\alpha_s)GeV^2 \end{aligned}$$
BaBar: PRL 93, 011803 (2004)

Determinations of V_{cb} from $B \to D^{(*)} \ell \nu$

 $\bar{B}^0 \to D^+ \ell^- \bar{\nu}$ Belle: PLB 526, 258 (2002)

 $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}$ BaBar: PRD-RC 71, 051502 (2005)

Measurements of $b \to u \ell \nu$ Decays

- Inclusive $b \to u \ell \nu$ using one reconstructed *B* decay as a tag and subtracting the $b \to c \ell \nu$ background:
 - Measure lepton energy endpoint spectrum
 - Measure q^2 from lepton and missing energy (neutrino)
 - Measure hadronic mass M_x
- Exclusive $B \to \pi \ell \nu$ and $B \to \rho \ell \nu$ using one reconstructed B decay as a tag:
 - Measure BFs as a function of q^2
 - Use isospin symmetry to relate $B^+ \to \pi^+$ and $B^0 \to \pi^0$
 - Use isospin symmetry to relate $B \to \rho^+, \rho^0, \omega$

$B \to \pi \ell \nu$ and Summary of V_{ub}

Exclusive $B \to \pi \ell \nu$ with Lattice QCD form factor

Inclusive $b \to u \ell \nu$ with shape parameters from $b \to c \ell \nu$ and $b \to s \gamma$

$b \to s \gamma$ as a probe of New Physics

Can replace the W and t quark in the "penguin" diagram with new particles in the loop:

Additional contributions could change the rate of $b \to s \gamma$

 $BF(b \to s\gamma) = (3.6 \pm 0.3) \times 10^{-4} \text{ SM} \quad (E_{\gamma} > 1.6 GeV)$

 $BF(b \rightarrow s\gamma) = (3.5 \pm 0.3) \times 10^{-4} \text{ HFAG} \quad (E_{\gamma} > 1.6 GeV)$

This agreement gives important constraints on New Physics Experimental error can be reduced to 5% with more data Theory error can be reduced with NNLO calculations

Time-Dependent CP Violation in $B \to K^* \gamma$ Couplings are left-handed (right-handed) for $b \to s\gamma$ $(\bar{b} \to \bar{s}\gamma)$ $S(K_s \pi^0 \gamma) \propto \frac{m_s}{m_b} \sin 2\beta = 0.042 \pm 0.021$ $C(K_s \pi^0 \gamma) < 0.01$ Matsumori & Sanda hep-ph/0512175

Current status of $B \to \rho \gamma$ Events / (30 MeV) 2 10 2 2 MeV/c BaBar: PRL 94, 011801 (2005) 2σ excesses in $B^{+(0)} \to \rho^+(\omega)\gamma$ but nothing in $B^0 \to \rho^0 \gamma$ $BF(B^0 \rightarrow \rho^0 \gamma) < 0.6 \times 10^{-6}$ 5.2 5.22 5.24 5.26 5.28 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 M_{ES} (GeV/c²) ∆E^{*} (GeV) $\overline{\mathbf{B}}^{\mathbf{0}} \rightarrow \rho^{\mathbf{0}} \gamma$ $\overline{\mathbf{B}}^{\mathbf{0}} \rightarrow \rho^{\mathbf{0}} \gamma$ Belle: hep-ex/0506079Entries/(4 MeV/c²) Entries/(50 MeV) 5σ excess in $B^0 \to \rho^0 \gamma$ $0.8 < BF(B^0 \to \rho^0 \gamma) < 1.5 \times 10^{-6}$ 0 5.2 -0.4 -0.2 0 0.2 5.22 5.24 5.26 5.28 5.3 0.4 M_{bc} (GeV/c²) Δ E (GeV) $\rho'\omega\gamma$ (combined) Belle and BaBar BaBar '04, 191 fb -1 ρ⁺γ differ by $\approx 3\sigma$ Belle '05, 350 fb -1 Ali et al. hep-ph/0405075 ρ°γ Is isospin broken? Bosch et al. hep-ph/0106081 wy $\rho^+:\rho^0:\omega\neq 2:1:1$ x 10⁻⁶ 2 3 5 **Branching Fraction**

Measuring V_{td}/V_{ts} with $b \to d\gamma$ penguins

$$\frac{BF(B \to \rho\gamma)}{BF(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{(1 - m_{\rho}^2/m_B^2)^3}{(1 - m_{K^*}^2/m_B^2)^3} \zeta^2 [1 + \Delta R]$$

 $\zeta = 0.85 \pm 0.10$ allows for SU(3) breaking in the form factor $\Delta R = 0.1 \pm 0.1$ allows for weak annihilation $(B^+ \to \rho^+ \gamma \text{ only!})$

34

Wilson coefficients C_7 , C_9 and C_{10} (sensitive to New Physics) from:

- Inclusive and exclusive (K, K^*) Branching Fractions as a function of q^2 of the leptons
- Forward-Backward lepton asymmetry as a function of q^2 (note that this is zero for $K\ell^+\ell^-$)
- The ratio of $se^+e^-/s\mu^+\mu^-$
- Direct CP asymmetries
- Eventually $b \to d\ell^+\ell^-$ (using $B \to \pi\ell^+\ell^-$)

Purely leptonic B decays

 $B \to \ell \nu$ proceeds via a weak annihilation diagram:

Standard Model prediction:

$$BF(B^+ \to \tau^+ \nu_{\tau}) = 1.2 \times 10^{-4} \left(\frac{f_B}{200 MeV}\right)^2 \left(\frac{V_{ub}}{0.004}\right)^2$$

can be modified by an H^+ at large $\tan\beta$

The decays $B^+ \to \mu^+ \nu_\mu$ and $B^+ \to e^+ \nu_e$ are helicity suppressed

$$\tau\nu: \mu\nu: e\nu = 1: 4 \times 10^{-3}: 1 \times 10^{-7}$$

BaBar search for $B \to \tau \nu$: hep-ex/0507069

A tag B^- is reconstructed as: \Rightarrow semileptonic $B^- \rightarrow D^{*0} \ell^- \nu$ \Rightarrow hadronic final states

$$au^+$$
 decays to:
 $e^+, \ \mu^+, \ \pi^+, \ \rho^+, \ a_1^+$
(81% of au decays)

Plot of extra energy in event Semileptonic tags

 $\tau \rightarrow e$ decays

Combined result from all tags and decays is close to expected BF:

 $BF(B^+ \to \tau^+ \nu_{\tau}) = 1.3^{+1.0}_{-0.9} \times 10^{-4} \quad (< 2.6 \times 10^{-4} \text{ at } 90\% \text{ C.L.})$

Next to Minimal Flavour Violation

General class of new physics models - Agashe et al. hep-ph/0509117

- Flavour structure quasi-aligns with SM Yukawa couplings
- New couplings are dominantly to third generation quarks

Constraints on magnitude h_d and phase ϕ_d of new $b \to d$ coupling

b Physics programme at LHCb

For many B^+ and B^0 decays:

one year of data matches all the data from the B factories...

... but there are also plenty of B_s , B_c and $\Lambda_b!$

A personal list of interesting measurements:

- Accurate measurements of Δm_s and $\Delta \Gamma_s$
- Constraints on ϕ_s from time-dependent CP violation in $B_s \to J/\psi \phi$
- Measurements of γ using $B_s \to D_s K$ and $B_s \to K^+ K^-$
- Search for new physics in $b \to s$ penguins using rare decays of B_d and B_s to ϕ and η'
- Measurements of asymmetries in $B \to K^* \ell^+ \ell^-$

Super B Factories?

 e^+e^- colliders at the $\Upsilon(4{\rm S})$ after BaBar/BELLE/LHCb

- SuperBELLE at KEK:
 - Luminosity: $2 5 \times 10^{35}$ $\int = 20ab^{-1}$
 - Timescale: 2011-2020 Cost: 450M
 - Proposal is under review in Japan
- SuperBaBar:
 - Luminosity: $5 7 \times 10^{35}$ $\int = 50ab^{-1}$
 - Timescale: 2013-2020 Cost: $\approx 500M$
 - Not supported by SLAC/US at present
- Linear Collider Super B:
 - Luminosity: $1 2 \times 10^{36}$ $\int \approx 100 a b^{-1}$
 - Feasibility is being studied at Frascati