Grand Unification and Strings: *the Geography of Extra Dimensions*

Hans Peter Nilles

Physikalisches Institut, Universität Bonn

Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, hep-th0410160, hep-th/0504117

Outline

- Grand Unification
- GUTs without GUT group
- **•** Spinors of SO(10)
- An SO(10) Model with 3 Families
- Gauge group geography in extra dimensions
- Unification ($\sin^2 \theta_W$)
- Proton decay
- Yukawa textures and flavour symmetries
- Electroweak symmetry breakdown
- Outlook

Experimental findings suggest the existence of two new scales of physics beyond the standard model $M_{\rm GUT} \sim 10^{16} {
m GeV}$ (and $M_{\rm SUSY} \sim 10^{3} {
m GeV}$):

Experimental findings suggest the existence of two new scales of physics beyond the standard model $M_{\rm GUT} \sim 10^{16} {
m GeV}$ (and $M_{\rm SUSY} \sim 10^{3} {
m GeV}$):

• Neutrino-oscillations and "See-Saw Mechanismus" $m_{\nu} \sim M_W^2/M_{\rm GUT}$ $m_{\nu} \sim 10^{-3} {\rm eV}$ for $M_W \sim 100 {\rm GeV}$,

Experimental findings suggest the existence of two new scales of physics beyond the standard model $M_{\rm GUT} \sim 10^{16} {
m GeV}$ (and $M_{\rm SUSY} \sim 10^{3} {
m GeV}$):

- Neutrino-oscillations and "See-Saw Mechanismus" $m_{\nu} \sim M_W^2/M_{\rm GUT}$ $m_{\nu} \sim 10^{-3} {\rm eV}$ for $M_W \sim 100 {\rm GeV}$,
- Evolution of couplings constants of the standard model towards higher energies.

Experimental findings suggest the existence of two new scales of physics beyond the standard model $M_{\rm GUT} \sim 10^{16} {
m GeV}$ (and $M_{\rm SUSY} \sim 10^{3} {
m GeV}$):

- Neutrino-oscillations and "See-Saw Mechanismus" $m_{\nu} \sim M_W^2/M_{\rm GUT}$ $m_{\nu} \sim 10^{-3} {\rm eV}$ for $M_W \sim 100 {\rm GeV}$,
- Evolution of couplings constants of the standard model towards higher energies.

Does this fit in the "Landscape" of string theory?

MSSM (supersymmetric)

Standard Model

Grand Unification

has changed our view of the world, but there are also some problematic aspects of the grand unified picture.

Grand Unification

has changed our view of the world, but there are also some problematic aspects of the grand unified picture.

Most notably

- absence of proton decay
- doublet triplet splitting
- complicated Higgs sector to break grand unified gauge group spontaneously

Grand Unification

has changed our view of the world, but there are also some problematic aspects of the grand unified picture.

Most notably

- absence of proton decay
- doublet triplet splitting
- complicated Higgs sector to break grand unified gauge group spontaneously

Can we avoid these problems in a more complete theory?

String theory candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds
- Heterotic SO(32)
- Heterotic $E_8 \times E_8$
- Intersecting Branes $U(N)^M$

String theory candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds
- Heterotic SO(32)
- Heterotic $E_8 \times E_8$
- Intersecting Branes $U(N)^M$

....or in eleven

- Horava-Witten heterotic M-theory
- Type IIA on manifolds with G_2 holonomy

Orbifolds

Orbifold compactifications combine the

- success of Calabi-Yau compactification
- calculability of torus compactification

Orbifolds

Orbifold compactifications combine the

- success of Calabi-Yau compactification
- calculability of torus compactification

In case of the heterotic string fields can propagate

- in the Bulk (d = 10 untwisted sector)
- on 3-Branes (d = 4 twisted sector fixed points)
- on 5-Branes (d = 6 twisted sector fixed tori)

\mathbb{Z}_2 **Example**

The geometry of the \mathbb{Z}_2 orbifold.

\mathbb{Z}_3 **Example**

\mathbb{Z}_3 **Example**

Action of the space group on coordinates

$$X^{i} \to (\theta^{k} X)^{i} + n_{\alpha} e^{i}_{\alpha}, \quad k = 0, 1, 2, \quad i, \alpha = 1, \dots, 6$$

Embed twist in gauge degrees of freedom

$$X^I \to (\Theta^k X)^I \quad I = 1, \dots, 16$$

Very few inequivalent models

Very few inequivalent models

Case	Shift V	Gauge Group	Gen.
1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right) \left(0^8\right)$	$E_6 \times SU(3) \times E_8'$	36
2	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right) \left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right)$	$E_6 \times SU(3) \times E_6' \times SU(3)'$	9
3	$\left(\frac{1}{3},\frac{1}{3},0^6\right)\left(\frac{2}{3},0^7\right)$	$E_7 \times U(1) \times SO(14)' \times U(1)'$	0
4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^3\right)\left(\frac{2}{3}, 0^7\right)$	$SU(9) \times SO(14)' \times U(1)'$	9

Very few inequivalent models

Case	Shift V	Gauge Group	Gen.
1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right) \left(0^8\right)$	$E_6 \times SU(3) \times E'_8$	36
2	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right) \left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right)$	$E_6 \times SU(3) \times E_6' \times SU(3)'$	9
3	$\left(\frac{1}{3},\frac{1}{3},0^6\right)\left(\frac{2}{3},0^7\right)$	$E_7 \times U(1) \times SO(14)' \times U(1)'$	0
4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^3\right)\left(\frac{2}{3}, 0^7\right)$	$SU(9) \times SO(14)' \times U(1)'$	9

as a result of the degeneracy of the matter multiplets at the 27 fixed points

Very few inequivalent models

Case	Shift V	Gauge Group	Gen.
1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right) \left(0^8\right)$	$E_6 \times SU(3) \times E_8'$	36
2	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right) \left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^5\right)$	$E_6 \times SU(3) \times E_6' \times SU(3)'$	9
3	$\left(\frac{1}{3},\frac{1}{3},0^6\right)\left(\frac{2}{3},0^7\right)$	$E_7 \times U(1) \times SO(14)' \times U(1)'$	0
4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^3\right)\left(\frac{2}{3}, 0^7\right)$	$SU(9) \times SO(14)' \times U(1)'$	9

as a result of the degeneracy of the matter multiplets at the 27 fixed points

We need to lift this degeneracy ...

\mathbb{Z}_3 Orbifold with Wilson lines

Torus shifts embedded in gauge group as well

$$X^I \to X^I + V^I + n_{\alpha} A^I_{\alpha}$$

\mathbb{Z}_3 Orbifold with Wilson lines

Torus shifts embedded in gauge group as well

$$X^I \to X^I + V^I + n_\alpha A^I_\alpha$$

- further gauge symmetry breakdown
- number of generations reduced

Early work on the \mathbb{Z}_3 **Orbifold**

Successful model building with

- three families of quarks and leptons
- gauge group $SU(3) \times SU(2) \times U(1)^n$
- doublet-triplet splitting
- mechanism for Yukawa suppression
- absence of grand unified gauge bosons

Early work on the \mathbb{Z}_3 **Orbifold**

Successful model building with

- three families of quarks and leptons
- gauge group $SU(3) \times SU(2) \times U(1)^n$
- doublet-triplet splitting
- mechanism for Yukawa suppression
- absence of grand unified gauge bosons

Leads to a picture of "GUTs without GUT group"

- Incomplete gauge and Higgs multiplets
- Transparent geometric interpretation

Things to improve

For models with $SU(3) \times SU(2) \times U(1)$ gauge group, the \mathbb{Z}_3 orbifold example is too rigid

- only fixed points and no fixed tori
- no "normal" grand unified picture (like SO(10))
- no large string threshold corrections
- problems with electroweak symmetry breakdown
- value of $\sin^2 \theta_W \neq 3/8$

Things to improve

For models with $SU(3) \times SU(2) \times U(1)$ gauge group, the \mathbb{Z}_3 orbifold example is too rigid

- only fixed points and no fixed tori
- no "normal" grand unified picture (like SO(10))
- no large string threshold corrections
- problems with electroweak symmetry breakdown
- value of $\sin^2 \theta_W \neq 3/8$

A successful approach in the framework of the \mathbb{Z}_3 -orbifold might be

• $SU(3)^3$ trinification

(Choi, Kim, 2003; Kim, 2004)

Work in the 90's

- some continuation on orbifold constructions, though not very specific
- fermionic formulation of heterotic string with very specific (semi) realistic models
- Type IIB orientifolds
- D brane constructions
- intersecting branes

Work in the 90's

- some continuation on orbifold constructions, though not very specific
- fermionic formulation of heterotic string with very specific (semi) realistic models
- Type IIB orientifolds
- D brane constructions
- intersecting branes

This gives a vast variety of models, both

- with or without supersymmetry in $d = 4 \dots$
- small or large compactified dimensions

 Gauge couplings meet at 10¹⁶ – 10¹⁷ GeV in the framework of the Minimal Supersymmetric Standard Model (MSSM)

- Gauge couplings meet at 10¹⁶ 10¹⁷ GeV in the framework of the Minimal Supersymmetric Standard Model (MSSM)
- See-saw mechanism for neutrino sector favours the interpretation of a family of quarks and leptons as a 16 dimensional spinor representation of SO(10)

- Gauge couplings meet at 10¹⁶ 10¹⁷ GeV in the framework of the Minimal Supersymmetric Standard Model (MSSM)
- See-saw mechanism for neutrino sector favours the interpretation of a family of quarks and leptons as a 16 dimensional spinor representation of SO(10)
- Model building in field theoretic orbifold GUTs in
 5 and 6 dimensions seems to lead to promising results

- Gauge couplings meet at 10¹⁶ 10¹⁷ GeV in the framework of the Minimal Supersymmetric Standard Model (MSSM)
- See-saw mechanism for neutrino sector favours the interpretation of a family of quarks and leptons as a 16 dimensional spinor representation of SO(10)
- Model building in field theoretic orbifold GUTs in
 5 and 6 dimensions seems to lead to promising results

Can we incorporate this into a string theory description?

Five golden rules

- Family as spinor of SO(10)
- Incomplete multiplets
- N = 1 superymmetry in d = 4
- Repetition of families from geometry
- Discrete symmetries of stringy origin

(HPN, 2004)

Five golden rules

- Family as spinor of SO(10)
- Incomplete multiplets
- N = 1 superymmetry in d = 4
- Repetition of families from geometry
- Discrete symmetries of stringy origin

(HPN, 2004)

Such a scheme should

- incorporate the successful structures of SO(10)-GUTs
- avoid (some of) the problems
Five golden rules

- Family as spinor of SO(10)
- Incomplete multiplets
- N = 1 superymmetry in d = 4
- Repetition of families from geometry
- Discrete symmetries of stringy origin

(HPN, 2004)

Such a scheme should

- incorporate the successful structures of SO(10)-GUTs
- avoid (some of) the problems

We need more general constructions to identify remnants of SO(10) in string theory

Candidates

In ten space-time dimensions.....

- **•** Type I SO(32)
- Type II orientifolds
- Heterotic SO(32)
- Heterotic $E_8 \times E_8$
- Intersecting Branes $U(N)^M$

Candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds
- Heterotic SO(32)
- Heterotic $E_8 \times E_8$
- Intersecting Branes $U(N)^M$

....or in eleven

- Horava-Witten heterotic M-theory
- Type IIA on manifolds with G_2 holonomy

Remnants of SO(10) **symmetry**

If we insist on the spinor representation of SO(10) we are essentially

- left with heterotic $E_8 \times E_8$ or SO(32)
- **9** go beyond the simple example of the Z_3 orbifold

Remnants of SO(10) **symmetry**

If we insist on the spinor representation of SO(10) we are essentially

- left with heterotic $E_8 \times E_8$ or SO(32)
- go beyond the simple example of the Z_3 orbifold

The Z_3 orbifold had fixed points but no fixed tori, leading to difficulties to

- incorporate a correctly normalized U(1)-hypercharge
- accomodate satisfactory Yukawa couplings

Remnants of SO(10) **symmetry**

If we insist on the spinor representation of SO(10) we are essentially

- left with heterotic $E_8 \times E_8$ or SO(32)
- go beyond the simple example of the Z_3 orbifold

The Z_3 orbifold had fixed points but no fixed tori, leading to difficulties to

- incorporate a correctly normalized U(1)-hypercharge
- accomodate satisfactory Yukawa couplings

From this point of view, the Z_{2N} or $Z_N \times Z_M$ orbifolds do look more promising

(Foerste, HPN, Vaudrevange, Wingerter, 2004)

$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold Example

$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold Example

3 twisted sectors (with 16 fixed tori in each) lead to a geometrical picture of

Intersecting Branes

$\mathbb{Z}_2 \times \mathbb{Z}_2$ classification

Case	Shifts	Gauge Group	Gen.
1	$ \begin{pmatrix} \frac{1}{2}, -\frac{1}{2}, 0^6 \end{pmatrix} \begin{pmatrix} 0^8 \end{pmatrix} \begin{pmatrix} 0, \frac{1}{2}, -\frac{1}{2}, 0^5 \end{pmatrix} \begin{pmatrix} 0^8 \end{pmatrix} $	$E_6 imes U(1)^2 imes E_8'$	48
2	$ \begin{pmatrix} \frac{1}{2}, -\frac{1}{2}, 0^6 \end{pmatrix} (0^8) \left(0, \frac{1}{2}, -\frac{1}{2}, 0^4, 1\right) (1, 0^7) $	$E_6 \times U(1)^2 \times SO(16)'$	16
3	$ \begin{pmatrix} \frac{1}{2}^2, 0^6 \end{pmatrix} \begin{pmatrix} 0^8 \end{pmatrix} \begin{pmatrix} \frac{5}{4}, \frac{1}{4}^7 \end{pmatrix} \begin{pmatrix} \frac{1}{2}, \frac{1}{2}, 0^6 \end{pmatrix} $	$SU(8) imes U(1) imes E_7' imes SU(2)'$	16
4	$ \left(\frac{1}{2}^2, 0^5, 1\right) \left(1, 0^7\right) \left(0, \frac{1}{2}, -\frac{1}{2}, 0^5\right) \left(-\frac{1}{2}, \frac{1}{2}^3, 1, 0^3\right) $	$E_6 imes U(1)^2 imes SO(8)'^2$	0
5	$ \left(\frac{1}{2}, -\frac{1}{2}, -1, 0^5\right) \left(1, 0^7\right) \left(\frac{5}{4}, \frac{1}{4}^7\right) \left(\frac{1}{2}, \frac{1}{2}, 0^6\right) $	$SU(8) \times U(1) \times SO(12)' \times SU(2)'^2$	0

$\mathbb{Z}_2 \times \mathbb{Z}_2$ with Wilson lines

Again, Wilson lines can lift the degeneracy....

Three family SO(10) toy model

Localization of families at various fixed tori

Zoom on first torus ...

Interpretation as 6-dim. model with 3 families on branes

second torus ...

... 2 families on branes, one in (6d) bulk ...

Three family SO(10) toy model

Localization of families at various fixed tori

third torus

... 1 family on brane, two in (6d) bulk.

Many properties of the models depend on the geography of extra dimensions, such as

the location of quarks and leptons,

- the location of quarks and leptons,
- the relative location of Higgs bosons,

- the location of quarks and leptons,
- the relative location of Higgs bosons,
- the localized gauge symmetry at fixed points (tori).

- the location of quarks and leptons,
- the relative location of Higgs bosons,
- the localized gauge symmetry at fixed points (tori).
- Discrete symmetries like family symmetries and R-parity might find their explanation in these geometric properties.
- Some small numbers (like suppressed Yukawa couplings) arise if fields are separated by a large distance

Model building

We can easily find

- models with gauge group $SU(3) \times SU(2) \times U(1)$
- 3 families of quarks and leptons
- doublet-triplet splitting
- N = 1 supersymmetry

(Förste, HPN, Vaudrevange, Wingerter, 2004)

(Kobyashi, Raby, Zhang, 2004)

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2004, 2005)

Model building

We can easily find

- models with gauge group $SU(3) \times SU(2) \times U(1)$
- 3 families of quarks and leptons
- doublet-triplet splitting
- N = 1 supersymmetry

(Förste, HPN, Vaudrevange, Wingerter, 2004)

(Kobyashi, Raby, Zhang, 2004)

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2004, 2005)

But explicit model building is tedious:

- removal of exotic states
- R parity
- "correct" hypercharge

Model building (II)

We do not yet have a complete understanding of the origin of these specific problems.

Model building (II)

We do not yet have a complete understanding of the origin of these specific problems.

Key properties of the models depend on geometry:

- family symmetries
- texture of Yukawa couplings
- number of families
- Iocal gauge groups on branes
- electroweak symmetry breakdown

Model building (II)

We do not yet have a complete understanding of the origin of these specific problems.

Key properties of the models depend on geometry:

- family symmetries
- texture of Yukawa couplings
- number of families
- Iocal gauge groups on branes
- electroweak symmetry breakdown

We need to exploit these geometric properties.....

Gauge group geography SO(10)

Durham, December 05 - p.33/45

SO(10)

SO(10)

SO(10)

Gauge group geography: Pati-Salam

Gauge geography: Standard Model

The Memory of SO(10)

- \blacksquare SO(10) is realized in the higher dimensional theory
- broken in d = 4
- incomplete multiplets

The Memory of SO(10)

- \blacksquare SO(10) is realized in the higher dimensional theory
- broken in d = 4
- incomplete multiplets

There could still be remnants of SO(10) symmetry

- 16 of SO(10) at some branes
- correct hypercharge normalization
- R-parity
- family symmetries

that are very useful for realistic model building ...

R-parity from SO(10) memory avoids dangerous dimension-4 operators

- R-parity from SO(10) memory avoids dangerous dimension-4 operators
- No proton decay via dimension-5 operators because of doublet-triplet splitting

- R-parity from SO(10) memory avoids dangerous dimension-4 operators
- No proton decay via dimension-5 operators because of doublet-triplet splitting
- Avoid SO(10) brane for first family: suppressed p-decay via dimension-6 operators

- R-parity from SO(10) memory avoids dangerous dimension-4 operators
- No proton decay via dimension-5 operators because of doublet-triplet splitting
- Avoid SO(10) brane for first family: suppressed p-decay via dimension-6 operators

Thus the proton could be practically stable!
• SO(10) memory provides a reasonable value of $\sin^2 \theta_W$ and a unified definition of hypercharge

- SO(10) memory provides a reasonable value of $\sin^2 \theta_W$ and a unified definition of hypercharge
- presence of fixed tori allows for sizable threshold corrections at the high scale to match string and unification scale

- SO(10) memory provides a reasonable value of $\sin^2 \theta_W$ and a unified definition of hypercharge
- presence of fixed tori allows for sizable threshold corrections at the high scale to match string and unification scale
- Yukawa unification from SO(10) memory for third family (on an SO(10) brane)

- SO(10) memory provides a reasonable value of $\sin^2 \theta_W$ and a unified definition of hypercharge
- presence of fixed tori allows for sizable threshold corrections at the high scale to match string and unification scale
- Yukawa unification from SO(10) memory for third family (on an SO(10) brane)
- no Yukawa unification for first and second family required

Yukawa couplings depend on location of Higgs and matter fields

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane
- Exponential suppression if fields at distant branes

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane
- Exponential suppression if fields at distant branes
- neutrino Majorana masses might need some bulk mixing (presence of anti-families)

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane
- Exponential suppression if fields at distant branes
- neutrino Majorana masses might need some bulk mixing (presence of anti-families)
- GUT relations could be partially present, depending on the nature of the brane (e.g. SO(10) brane)

Full classification seems to be too difficult (at the moment). Work in progress:

Full classification seems to be too difficult (at the moment). Work in progress:

• SO(32) classification (with SO(10) spinors)

(Choi, Groot Nibbelink, Trapletti, 2004)

(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)

Full classification seems to be too difficult (at the moment). Work in progress:

• SO(32) classification (with SO(10) spinors)

(Choi, Groot Nibbelink, Trapletti, 2004)

(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)

• (partial) classification of $Z_2 \times Z_2$ and $Z_2 \times Z_3$

(HPN, Ploeger, Ramos-Sanchez, Ratz, Vaudrevange, 2006)

Full classification seems to be too difficult (at the moment). Work in progress:

• SO(32) classification (with SO(10) spinors)

(Choi, Groot Nibbelink, Trapletti, 2004)

(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)

• (partial) classification of $Z_2 \times Z_2$ and $Z_2 \times Z_3$

(HPN, Ploeger, Ramos-Sanchez, Ratz, Vaudrevange, 2006)

smooth breakdown of gauge group

(Förste, HPN, Wingerter, 2005)

• $Z_2 \times Z_3$ Pati-Salam model

(Kobyashi, Raby, Zhang, 2004)

• $Z_2 \times Z_3$ Pati-Salam model

(Kobyashi, Raby, Zhang, 2004)

• $Z_2 \times Z_3$ standard model

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2005)

• $Z_2 \times Z_3$ Pati-Salam model

(Kobyashi, Raby, Zhang, 2004)

• $Z_2 \times Z_3$ standard model

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2005)

standard model in fermionic formulation

(Faraggi et al., 92)

• $Z_2 \times Z_3$ Pati-Salam model

(Kobyashi, Raby, Zhang, 2004)

• $Z_2 \times Z_3$ standard model

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2005)

standard model in fermionic formulation

(Faraggi et al., 92)

standard model on specific Calabi-Yau orbifold

(Ovrut et al., 2005)

The Higgs-mechanism in string theory...

...can be achieved via continuous Wilson lines. The aim is:

The Higgs-mechanism in string theory...

...can be achieved via continuous Wilson lines. The aim is:

- electroweak symmetry breakdown
- breakdown of Trinification or Pati-Salam group to the Standard Model gauge group
- rank reduction

The Higgs-mechanism in string theory...

...can be achieved via continuous Wilson lines. The aim is:

- electroweak symmetry breakdown
- breakdown of Trinification or Pati-Salam group to the Standard Model gauge group
- rank reduction

Continuous Wilson lines require specific embeddings of twist in the gauge group

(Ibanez, HPN, Quevedo, 1987)

- difficult to implement in the Z_3 case
- more promising for Z_2 twists

An example

We consider a model that has E_6 gauge group in the bulk of a "6d orbifold". The breakdown pattern is

An example

We consider a model that has E_6 gauge group in the bulk of a "6d orbifold". The breakdown pattern is

- $E_6 \rightarrow SO(10)$ via a Z_2 twist
- SO(10) → SU(4) × SU(2) × SU(2) × U(1) via a discrete (quantized) Wilson line

An example

We consider a model that has E_6 gauge group in the bulk of a "6d orbifold". The breakdown pattern is

- $E_6 \rightarrow SO(10)$ via a Z_2 twist
- SO(10) → SU(4) × SU(2) × SU(2) × U(1) via a discrete (quantized) Wilson line

Such 6d models can be embedded in 10d string theory orbifolds. Models with consistent electroweak symmetry breakdown have been constructed.

(Förste, HPN, Wingerter, 2006)

Pati-Salam breakdown

Conclusion

Heterotic string compactifications might lead to models that incorporate all the successful ingredients of grand unified theories, while avoiding the problematic ones.

- spinor representations of SO(10)
- geometric origin of (three) families
- incomplete multiplets
- supersymmetric unification
- R-parity
- "absence" of proton decay
- gauge-Yukawa unification (partial GUT relations)
- discrete family symmetries