$t\bar{t}$ cross section measurement in ATLAS ... and my interest in W + jets

Martijn Gosselink

MCnet meeting

 15^{th} of January 2009

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	00000

Overview

• Introduction

- Cross section measurement
- Jet multiplicity
- Towards data
- Summary

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	00000
The top qu	uark				

 $\begin{array}{lll} \textbf{2008 results} \\ \sigma_{nlo}(p\bar{p} \to t\bar{t}) & 7.6\text{-}7.9 \text{ pb} \\ \text{CDF} & 7.8 \pm 0.9 \text{ pb} \\ \text{D} \varnothing & 7.0 \pm 0.6 \text{ pb} \\ M_{top} = 172.4 \pm 1.2 \text{ GeV/c}^2 \end{array}$

Discovery in 1995 at Tevatron:

Fitted Mass (GeV/c2)

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	00000

Why study $t\bar{t}$ events?

Many reasons

- $t\bar{t}$ as signal:
 - cross section
 - properties: mass, width, spin, charge, W helicity
 - couplings:
 - $\mathcal{B}r(t \to Wb) \ (V_{tb})$
 - $\mathcal{B}r(t \to Hq)$
 - $\mathcal{B}r(t \to Zq)$ (FCNC)

 $t\bar{t}$ as background:

- single top, WH
- $t\bar{t}H$ (1,000× smaller!) \leftarrow my PhD funding
- SUSY $(\tilde{t}\bar{\tilde{t}})$
- Heavy resonances $(Z' \to t\bar{t})$

- ...

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	00000

$t\bar{t}$ production at the LHC

 $\begin{array}{ll} \mathcal{B}r(t \to Wb) &\approx 1 \\ \mathcal{B}r(W \to qq') &\approx 2/3 \\ \mathcal{B}r(W \to \ell\nu_{\ell}) &\approx 1/3 \end{array}$

 $\sigma_{nlo}(14 \text{ TeV}) = 908 \text{ pb}$ $\sigma_{nlo}(10 \text{ TeV}) = 425 \text{ pb}$

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Where to study $t\bar{t}$ events?

The ATLAS detector

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

How to analyse $t\bar{t}$ events?

The Atlas computing model

Data locations				
Tier-0	1 x	: CERN		
Tier-1	$10 \mathrm{x}$: NL,UK,ES,DE,IT,FR,TW,CA,BNL,NDGFT1		
Tier-2/3	∞ x	: within a cloud, eg. NL		

Jobs to data

Where to run?

- LCG grid
- Nikhef cluster: STOOMBOOT (SARA)
- Local desktop

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	00000

A typical $t\bar{t}$ event

Atlantis event display

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	●0000	000	00000	0	00000

Overview

- Introduction
- Cross section measurement
- Jet multiplicity
- Towards data
- Summary

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	0000	000	00000	0	00000

Monte Carlo exercise

Event selection

- \bullet pass trigger: e / μ
- $\bullet~1$ isolated lepton: e / μ
- $3x \text{ jet } p_T > 40 \text{ GeV/c}$ $1x \text{ jet } p_T > 20 \text{ GeV/c}$

NB: no b-tagging used

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	0000	000	00000	0	00000

Monte Carlo exercise

Event selection

- \bullet pass trigger: e / μ
- \bullet 1 isolated lepton: e / μ
- $3x \text{ jet } p_T > 40 \text{ GeV/c}$ $1x \text{ jet } p_T > 20 \text{ GeV/c}$

W+jets

QCD multi-jet

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Monte Carlo exercise

Event selection

- \bullet pass trigger: e / μ
- $\bullet~1$ isolated lepton: e / μ
- 3x jet $p_T > 40 \text{ GeV/c}$ 1x jet $p_T > 20 \text{ GeV/c}$

NB: no b-tagging used

Reconstructing hadronic top

- take 3-jet combination with highest p_T
- require 2-jet combination $\Delta(M_{jj} M_W) < 10 \text{ GeV/c}^2$

•
$$\sigma(t\bar{t}) = \frac{N_{gauss}(sig)}{\mathcal{L} \cdot \epsilon_{peak}}$$

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Monte Carlo exercise

Event selection

- \bullet pass trigger: e / μ
- $\bullet~1$ isolated lepton: e / μ
- 3x jet p_T > 40 GeV/c
 1x jet p_T > 20 GeV/c

NB: no b-tagging used

Reconstructing hadronic top

- take 3-jet combination with highest p_T
- require 2-jet combination $\Delta(M_{jj} M_W) < 10 \text{ GeV/c}^2$

•
$$\sigma(t\bar{t}) = \frac{N_{gauss}(sig)}{\mathcal{L} \cdot \epsilon_{peak}}$$

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	00000

Results (for 100 pb^{-1})

Reconstructing hadronic top mass

	electron	muon
$t\overline{t}$	1,262	1,606
background	374	495
N_{peak}	327	508

background: W+jets, Z+jets, single top, $Wb\bar{b}$ +jets, WW, WZ, ZZ

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Systematic uncertainties Results for 100 pb^{-1}

	Likelihood fit		
Source	Electron	Muon	
	(%)	(%)	
Statistical	10.5	8.0	
Lepton ID efficiency	1.0	1.0	
Lepton trigger efficiency	1.0	1.0	
50% more W +jets	1.0	0.6	
20% more W+jets	0.3	0.3	
Jet Energy Scale (5%)	2.3	0.9	
PDFs	2.5	2.2	
ISR/FSR	8.9	8.9	
Shape of fit function	14.0	10.4	

Likelihood method: $\Delta \sigma / \sigma = (7(\text{stat}) \pm 15(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$ Counting method: $\Delta \sigma / \sigma = (3(\text{stat}) \pm 16(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	0000	000	00000	0	00000

Overview

- Introduction
- Cross section measurement
- Jet multiplicity
- Towards data
- Summary

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	•00	00000	0	00000

Why is jet multiplicity important?

Effects on cross section measurement

• reconstruction efficiency

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	•00	00000	0	00000

Why is jet multiplicity important?

Effects on cross section measurement

• reconstruction efficiency

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Estimating jet multiplicity

Uncertainties Monte Carlo

• Parton shower

• ISR/FSR parameters

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Estimating jet multiplicity

Uncertainties Monte Carlo

Alex Flossdorf

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Estimating jet multiplicity

Uncertainties Monte Carlo

• Accuracy technique

• Parton shower

from Fabio Maltoni

• ISR/FSR parameters

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Estimating Monte Carlo uncertainty

Comparison

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Estimating Monte Carlo uncertainty

Comparison

$tar{t}(\mu)$	$\epsilon_{ m sel}$		$\epsilon_{ m reco}$		$\epsilon_{ m comb}$	
MC@NLO	27.72	± 0.40	19.30	± 0.67	5.35	± 0.20
AlpGen	28.87	± 0.41	19.39	± 0.66	5.60	± 0.21
AcerMC	30.40	± 0.41	17.49	± 0.62	5.32	± 0.20

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	0000	0	00000
_					

Overview

- Introduction
- Cross section measurement
- Jet multiplicity
- Towards data
- Summary

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	oooo	O	00000

Implications for $t\bar{t}H$

Looking a bit further

sample	commissioning	b-tagging
$t\bar{t}(\mu)$	$3,\!677$	950
$t\bar{t}H$	4	2

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

First data

Plans for 2009

Measure jet rates in events with:

- \bullet isolated μ
- $\not\!\!\!E_T$
- (many) jets

CDF 1995

ATLAS ...?

Introduction 0000000 Cross section 00000

Tevatron

Jet multiplicity 000 Outlook Summary Backup 00000 0 00000

Predicting W + jets

Preparing for first data

LHC

hep-ph/0706.2569

Introduction 0000000	Cross section	Jet multiplicity	Outlook 0000	Summary 0	Backup 00000

MCnet studentship

Plans for 4 months

- **③** Get more familiar with Ariadne/CKKW-L
- **②** Ariadne in ATLAS framework
- ③ Ariadne CKKW-L in ATLAS framework
- Study W+ jets in $t\bar{t}$ analysis
- Other processes (?)
- **()** ...

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	•	00000

Summary

- The Atlas experiment
- Top cross section measurement
- The effect of jet multiplicity
- Importance of good Monte Carlo prediction
- Future plans

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
000000	00000	000	00000	0	•0000

10 vs 14 TeV

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	0●000
10 vs 14 T	eV				

Selection Efficiencies

muon channel

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

$10~\mathrm{vs}$ 14 TeV

 M_{jjj} with M_W constraint (muon channel)

	\mathbf{CSC}	MC08
$t\bar{t}$	1,725	890
W+jets	318	297

Introduction	Cross section	Jet multiplicity	Outlook	Summary	Backup
0000000	00000	000	00000	0	00000

Results from CSC

Counting method and likelihood fit

	Likelihood fit		Counting method	
Source	Electron	Muon	Electron	
	(%)	(%)	(%)	
Statistical	10.5	8.0	3.5	
Lepton ID efficiency	1.0	1.0	1.0	
Lepton trigger efficiency	1.0	1.0	1.0	
50% more W+jets	1.0	0.6	9.5	
20% more W +jets	0.3	0.3	3.8	
Jet Energy Scale (5%)	2.3	0.9	9.7	
PDFs	2.5	2.2	2.5	
ISR/FSR	8.9	8.9	8.9	
Shape of fit function	14.0	10.4	-	