Introduction Standard CKKW(-L) merging Adding one-loop ME's

NL³ — a scheme for merging NLO+PS

Nils Lavesson

Department of Theoretical Physics Lund University

MCnet collaboration meeting Durham 09.01.16 J. High Energy Phys. 12 (2008) 070.

< □ > < 同

NLO+PS merging

Leif Lönnblad

1

Introduction Standard CKKW(-L) merging Adding one-loop ME's

Outline

Introduction

Standard CKKW(-L) merging

Tree-level ME's Mixing merging/ordering scales Reconstruction and reweighting

Adding one-loop ME's

One-loop ME's Expanding the CKKW-L weights

Implementation details

 $\alpha_{\rm s}$ considerations Generating the expanded Sudakov The full algorithm Mixing merging/ordering scales

Outlook

Introduction

- Starting point is CKKW-L
- Most of this is easily applicable also to plain CKKW
- We want to add events generated according to loop ME's
- The corresponding terms must be subtracted from the standard CKKW-L events.

Standard CKKW(-L) merging

Start out with events generated according to tree-level ME's

$$d\sigma_{+n}^{\text{tree}} = C_n(\Omega_n)\alpha_s^n(\mu)d\Omega_n$$

where $\Omega_n = (q_1, \dots, q_m; p_1, \dots, p_n)$ is the phase spcae for an *m*-particle Born process with *n* extra jets.

The divergencies are regularized by a jet-like phase space cut, $k_{\perp MS}$.

Introduction Standard CKKW(-L) merging Adding one-loop ME's, Tree-level ME's Mixing merging/ordering scales Reconstruction and reweighting

Here we will assume that the parton shower is ordered in ρ , which is the same variable as $k_{\perp MS}$.

In this way we don't have to worry about vetoed/trunkated showers. We can simply add a shower below $k_{\perp MS}$ (except for the highest jet multiplicity).

Mixed ordering/mergin scales will be discussed later.

First we do a mapping to the patron shower phase space

$$\Omega_n \mapsto \Omega_n^{\mathrm{PS}} = (q_1, \ldots, q_m; \rho_1, x_1 \ldots, \rho_n, x_n)$$

I.e. a parton shower history is constructed, with emissions (ρ_i, \mathbf{x}_i) .

Then we reweight

$$d\sigma_{+n}^{\mathrm{CKKW-L}} = C_n(\Omega_n)\alpha_{\mathrm{s}}^n(\mu)\prod_{i=1}^n \frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}(\rho_i)}{\alpha_{\mathrm{s}}(\mu)}\prod_{i=0}^n \Delta_{\mathrm{S}_i}(\rho_i,\rho_{i+1})d\Omega_n^{\mathrm{ps}}$$

with $\rho_{n+1} = k_{\perp MS}$.

Introduction Standard CKKW(-L) merging Adding one-loop ME's

 $\alpha_{\rm s}^{\rm PS}(\rho_i)$ is the coupling the shower would have used in the corresponding emission.

 $\Delta_{S_i}(\rho_i, \rho_{i+1})$ is the no-emission probability in the shower from the reconstructed state S_i between the scales ρ_i and ρ_{i+1} . This is by definition the Sudakov form factor used in the shower.

Lund University

Adding one-loop ME's

Now we want to look at *n*-jet events generatet to one-loop order

$$d\sigma_{+n}^{\text{loop}} = C_n(\Omega_n)\alpha_{\text{s}}^n(\mu) \left[1 + C_{n,1}(\Omega_n)\alpha_{\text{s}}(\mu)\right] d\Omega_n$$

Where $C_{n,1}$ is the virtual and real corrections integrated up to the merging scale $k_{\perp MS}$.

We can't use CS-dipole subtraction directly. Subtraction terms need to be cutoff at $k_{\perp MS}$ (cf. yesterdays discussion).

$$\sigma_{+n}^{\rm NLO} = \sigma_{+n}^{\rm loop} + \sigma_{+n+1}^{\rm tree}$$

- σ^{CKKW-L}_{+n} gives exclusive n-jet states approximately correct (as far as the PS is correct) to all orders in α_s.
- ► $\sigma_{+n}^{\text{loop}}$ gives exclusive n-jet states exactly correct to the first two orders in α_{s} .

In both cases we can add a shower below $k_{\perp MS}$.

tandard CKKW(-L) merging^{*} Adding one-loop ME's Implementation details

One-loop ME's Expanding the CKKW-L weights

We want to use $\sigma_{+n}^{\rm loop}$ and add $\sigma_{+n}^{\rm CKKW-L}$ with the first two orders in $\alpha_{\rm s}$ subtracted.

$$\prod_{i=1}^{n} \frac{\alpha_{s}^{\text{PS}}(\rho_{i})}{\alpha_{s}(\mu)} \prod_{i=0}^{n} \Delta_{S_{i}}(\rho_{i}, \rho_{i+1}) = 1 + \alpha_{s}(\mu)B^{\text{PS}} + \mathcal{O}\left(\alpha_{s}^{2}(\mu)\right)$$

So we reweight the tree-level events by

$$\left[\prod_{i=1}^{n}\frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}(\rho_{i})}{\alpha_{\mathrm{s}}(\mu)}\prod_{i=0}^{n}\Delta_{\mathrm{S}_{i}}(\rho_{i},\rho_{i+1})-1-\alpha_{\mathrm{s}}(\mu)B^{\mathrm{PS}}\right]$$

NLO+PS merging

σ^{loop}_{+n} + σ^{PScorr}_{+n} gives exclusive n-jet states exactly correct to the first two orders in α_s and approximately correct to all other orders in α_s.

So far we have not added anything to new as compared to Nagy–Soper.

Adding one-loop ME's Implementation details Outlook α_s considerations Generating the expanded Sudakov The full algorithm

Implementation details

- Note that $\alpha_{s}(\mu) \neq \alpha_{s}^{PS}(\mu)$.
- ► α_s^{PS} is typically a one- or two-loop α_s with Λ_{QCD} a free parameter fitted reproduce event shapes at LEP.
- α_s(μ) is here just a fixed number corresponding to the "world-average" α_s(M_Z) running with Λ_{MS}

Typically $\alpha_s^{PS}(M_Z) > \alpha_s(M_Z)$ because the parton shower underestimates the emission probabilities, and needs to boost the probabilities to fit the data.

Adding one-loop ME's°

$$\alpha_s$$
 considerations

 Implementation details
 Generating the expanded Sudakov

 Outlook
 The full algorithm

Rather than tuning Λ_{QCD} , we could say we are using $\Lambda_{\overline{MS}}$ and instead tune a scale factor, $\alpha_s^{PS}(\rho) = \alpha_s(b\rho)$.

Hence, we can write

$$\frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}(\rho)}{\alpha_{\mathrm{s}}(\mu)} = \mathbf{1} - \frac{\log \frac{b\rho}{\mu}}{\alpha_{0}} \alpha_{\mathrm{s}}(\mu) + \mathcal{O}\left(\alpha_{\mathrm{s}}^{2}(\mu)\right)$$

Implementation details	Generating the expanded Sudakov
Outlook	The full algorithm

$$\Delta_{\mathsf{S}_{i}}(\rho_{i},\rho_{i+1}) = \exp\left(-\int_{\rho_{i+1}}^{\rho_{i}} d\rho \alpha_{\mathsf{s}}(\rho) \mathsf{\Gamma}_{\mathsf{S}_{i}}(\rho)\right)$$

We know how to generate this from the shower:

- Start the shower from the state S_i, with ρ_i as the maximum scale.
- Generate one emission giving a scale ρ.
- The probability that $\rho < \rho_{i+1}$ is exactly $\Delta_{S_i}(\rho_i, \rho_{i+1})$.

Implementation details	Generating the expanded Sudakov
Outlook	The full algorithm

- If ρ > ρ_{i+1}, restart from S_i and generate again one emission starting from ρ as maximum scale.
- Continue until we find a $\rho < \rho_{i+1}$.
- Count the number of emissions n_{acc} before going below ρ_{i+1} .

$$\langle n_{acc} \rangle = -\log \Delta_{S_i}(\rho_i, \rho_{i+1}) = \int_{\rho_{i+1}}^{\rho_i} d\rho \alpha_s(\rho) \Gamma_{S_i}(\rho)$$

• • • • • • •

Adding one-loop ME's Î	$\alpha_{ m s}$ considerations
Implementation details	Generating the expanded Sudakov
Outlook	The full algorithm

We want to calculate the first two term

$$\begin{aligned} \Delta_{\mathcal{S}_{i}}(\rho_{i},\rho_{i+1}) &= 1 - \int_{\rho_{i+1}}^{\rho_{i}} d\rho \alpha_{s}(\rho) \Gamma_{\mathcal{S}_{i}}(\rho) + \mathcal{O}\left(\alpha_{s}^{2}(\mu)\right) \\ &= 1 - \alpha_{s}(\mu) \int_{\rho_{i+1}}^{\rho_{i}} d\rho \Gamma_{\mathcal{S}_{i}}(\rho) + \mathcal{O}\left(\alpha_{s}^{2}(\mu)\right) \end{aligned}$$

Using the method above we get $-\log \Delta$, but we generate it using a fixed $\alpha_s(\mu)$ in the shower (if available as option).

Now we have everything we need:

- Generate events with 0 ≤ n ≤ N extra jets according to the tree-level ME cut off at k_{⊥MS}.
- Generate events with 0 ≤ n < N extra jets according to the one-loop ME cut off at k_{⊥MS}.
- Reconstruct $\Omega_n \mapsto \Omega_n^{\text{PS}}$.
- For one-loop events, add PS below $k_{\perp MS}$.
- For three-level events, reweight with n = N, reweight with

$$\prod_{i=1}^{n} \frac{\alpha_{s}^{\text{PS}}(\rho_{i})}{\alpha_{s}(\mu)} \prod_{i=0}^{n-1} \Delta_{S_{i}}(\rho_{i}, \rho_{i+1})$$

and continue below ρ_n .

Adding one-loop ME's Generating the expanded Sudakov Implementation details Outlook Mixing merging/ordering scales

For three-level events with n < N, reweight with

$$\prod_{i=1}^{n} \frac{\alpha_{s}^{\text{PS}}(\rho_{i})}{\alpha_{s}(\mu)} \prod_{i=0}^{n} \Delta_{S_{i}}(\rho_{i}, \rho_{i+1})$$

$$-1$$

$$+\alpha_{s}(\mu) \sum_{i=1}^{n} \frac{\log \frac{b\rho_{i}}{\mu}}{\alpha_{0}}$$

$$+\alpha_{s}(\mu) \sum_{i=0}^{n} \int_{\rho_{i+1}}^{\rho_{i}} d\rho \Gamma_{S_{i}}(\rho)$$

and add PS below $k_{\perp MS}$

ž

Adding one-loop ME's^{*} Implementation details Outlook Outlook Outlook

All weights are positive as long as

- $k_{\perp MS}$ is large enough for the loop ME to be positive
- $\blacktriangleright \mu < \boldsymbol{b}\rho_i$

The net result is events generated so that all *n*-jet observables (above the merging scale and n < N) will be correct to NLO with a PS-simulated resummation. And *N*-jet observables will correct to LO+PSresum.

NILL CONTRACTOR

	Generating the expanded Su
mplementation details	The full algorithm
Outlook	Mixing merging/ordering scal

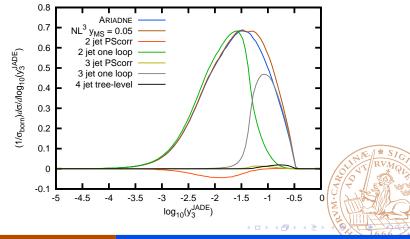
If the scale for the merging is not the same as in the shower evolution, things becom a bit more complicated.

Also in the one-loop events we then need to multiply with Sudakov form factors (no-emission probability below the cut but above the reconstructed shower scales).

n-jet observables will be correct to NLO+PSresum only if the n hardest (according to the PS) are above the merging scale.

Adding one-loop ME's Generating the expanded Sudakov Implementation details The full algorithm Outlook Mixing merging/ordering scales

Why combine several different jet multiplicities? If we are looking at three-jet observables, why generate two-jet events? Isn't it enough to generate 3-jet loop + 4-jet tree?



Adding one-loop ME's^{*} mplementation details Outlook

Outlook

- CKKW-L-like NLO+PS merging works.
- So far only for e⁺e⁻
- Should be trivial to apply to standard CKKW as well (the Sudakovs can be expanded analytically)
- Doing it for pp collisions, eg. Drell-Yan should be possible, but not necessarily trivial.

In CKKW-L, the main difference is the ratios of PDF's which enters into the Sudakov form factors and in the weight directly.

We may need to worry about renormalization scheme dependencies as well.

Adding one-loop ME's mplementation details Outlook

NL³ — a scheme for merging NLO+PS

Nils Lavesson

Department of Theoretical Physics Lund University

MCnet collaboration meeting Durham 09.01.16 J. High Energy Phys. 12 (2008) 070.

NLO+PS merging

Leif Lönnblad