Measurement of M_W with a Standard Candle Part I

Andrzej Siódmok^{a,b}

in collaboration with M. W. Krasny^b & W. Płaczek^a & F. Fayette^b the IN2P3-COPIN collaboration program 05-116

^a Jagiellonian University, Cracow ^bLPNHE, Paris

MCnet annual meeting, Durham - 15 January 2008

OUTLINE

- 1. Introduction
- 2. Results for M_W
- 3. Conclusion

1. Introduction

General idea:

Optimise the use of the Z^0 boson in Drell–Yan-pair production processes as "the standard reference candles" for measuring the inclusive W^{\pm} - boson production processes.

[F. Fayette, W. Krasny, W. Płaczek AS, Eur. Phys. J. C 51, 607 (2007)]

The strategy allows to factorise and directly measure QCD effects which affect differently the W^{\pm} and Z^{0} production processes.

- reduces significantly uncertainties in the partonic distribution functions while preserving their sensitivity to the SM parameters
- reduces by a factor of 10 the impact of systematic measurement errors, such as the energy scale and the measurement resolution.

Last MCnet meeting in Debrecen:

Florent Fayette's talk on W's mass asymmetry.

[F. Fayette, W. Krasny, W. Płaczek AS, arXiv:0812.2571]

- Cuts and statistics.
 - Cuts : $p_{T,l} > 20 \text{ GeV} \& |\eta_l| < 2.5$, where $(l = \{e, \mu\})$
 - ▶ Stat : 1 ATLAS year at low luminosity 10 fb⁻¹
 - $\sigma^{\rm cut}_{W^++W^-} \sim 18,8\,{\rm nb} \Rightarrow 188 \times 10^6 \ W^+$ and W^-
 - $\sigma_{\tau^0}^{\rm cut} \sim 2.1 \, {\rm nb} \Rightarrow 21 \times 10^6 \, Z^0$
 - Charged lepton smearing : ATLAS Inner Detector
- Systematics studies (the strongest effects in D0/CDF):
 - Experimental/Apparatus:
 - Energy Scale (ES): $p_{T,I} = (1 \pm \epsilon_s) \cdot p_{T,I_{truth}}$ and $\epsilon_s = \pm 0.5\%$ and $\pm 0.05\%$
 - Resolution Error (RE): 0.7 and 1.3 (wd. Gaussian smearing of track)
 - Theoretical/Modeling:
 - PDF effects (errors) CTEQ6.1 [J. Pumplin et al JHEP07, 012 (2002)]
 - Primordial k_T QCD effects (Non-perturbative and higher order effects)
 - QED radiative corrections not included yet ZINHAC++ in progress.
- Tools :
 - MC : WINHAC [W. Płaczek & S. Jadach, Eur. Phys. J. C 29 : 325-339, 2003]
 - QCD effects incorporated from PYTHIA

[T. Sjostrand, S. Mrenna, and P. Skands, JHEP 05, 026 (2006)]

 \bullet The influence of effects both theoretical and experimental is extracted by performing binned χ^2 fits.

$$\chi_{\text{eff}}^{2} \left(M_{W}^{PDG} \pm \Delta M_{W} \right) = \sum_{i} \frac{\left(N_{i} \left[M_{W}^{PDG} \pm \Delta M_{W} \right] - N_{i}^{\text{eff}} \left[M_{W}^{PDG} \right] \right)^{2}}{\sigma_{N_{i}}^{2} + \sigma_{N_{i}^{\text{eff}}}^{2}}$$

where:

N_i - the number of expected events in the template distribution in bin i
 N_i^{eff} - the number of expected events in the pseudo-data distribution in bin i
 eff = ES, RE, PDF min/max, kT

• After evaluation of all χ^2 for given *eff*, we fitted parabola, the position of its minimum estimates size of an *eff*, error (1σ) is calculated from the value $\chi^2 + 1$

• example in next slides.

2. Results for M_W studies

- Assumption: the masses of the W^+ and W^- bosons are the same ¹.
- Present:
 - *M_W* = 80.413 ± 0.048 GeV [recent CDF]
- M_W & Γ_W measured in hadronic collisions via $W^{\pm} \rightarrow l^{\pm} \frac{(-)}{\nu_l} (l^{\pm} = \{e^{\pm}, \mu^{\pm}\})$
 - ▶ $p_{T,I} \rightarrow I^{\pm}$
 - $\blacktriangleright m_{T, \, l \, \nu_l} \rightarrow l^{\pm} \& \overset{(-)}{\nu_l} (\not\!\!\!E_T)$

• "Standard method" during this talk \equiv , the method currently used in hadron colliders. (the plots: $\rho_l=1/p_{T,l})$

¹(see F. Fayette talk or [arXiv:0812.2571])

Standard Method - systematical effect - ES = 0.05 %

• The others systematical effects (RE, k_T , PDFs) are even bigger.

Simple Z - Candle

Simple Z - Candle - $R_{\text{simple}} = \frac{\rho_l^W}{\rho_r^Z}$ - systematical effect - ES = 0.05 %

• One of the lepton from the Z^0 boson is (randomly) removed from the charged

Standard Candle (11/21) \square Results for M_W studies

Z Candle - $R_{candle} = \frac{\rho_l^W(s_1, i_1)}{\rho_l^Z(s_2, i_2)}$ - systematical effect - ES = 0.05 %

▶ s_1 and s_2 are CM-energy of the beam $\sqrt{s_1} = \frac{M_W}{M_Z} \sqrt{s_2}$. ⇒ the momentum fractions of the partons producing Z^0 and Ws are equal

at the energy √s₁ the coil current has been rescaled down by the factor M_W/M_Z.
 ⇒ the distribution of the curvature radius (ρ_l) for charged leptons originating from the decays of the Z⁰ and W are the same.

-19 ± 4.91	15 ± 4.9		

• PDF effect are not presented but the mass shifts calculated using CTEQ6.1 [J. Pumplin et al JHEP07, 012 (2002)] method are also below statistical errors.

 \bullet The effect of $\mathrm{ES}=0.5\%$ for "Standard Method" is huge $>270\,\text{MeV},$ the Standard

Candle method can reduce it to $\sim 15\pm 6.0\,{
m MeV}$ with $\chi^2=$ 0.95, nbof= 200.

▶ s_1 and s_2 are CM-energy of the beam $\sqrt{s_1} = \frac{M_W}{M_Z} \sqrt{s_2}$. ⇒ the momentum fractions of the partons producing Z^0 and Ws are equal

at the energy √s₁ the coil current has been rescaled down by the factor M_W/M_Z.
 ⇒ the distribution of the curvature radius (ρ_l) for charged leptons originating from the decays of the Z⁰ and W are the same.

ΔM_w [MeV]	ES = 0.05%	ES = -0.05%	RF = 0.7	RF = 1.3	$\Delta kT = -1[\text{GeV}]$	$\Delta kT = +1[\text{GeV}]$
Standard	-29 ± 1.8	25 ± 1.8	14.1 ± 1.8	-22.8 ± 1.8	> 31	> 40
Simple Z Candle	-19 ± 4.91	15 ± 4.9	> 50	> 77	> 66	> 76
Z candle	0.4 ± 5.9	3.1 ± 5.9	6.6 ± 5.9	-3.7 ± 5.9	17.7 ± 6.11	-9.77 ± 6.0
$\chi^{2}/200$	1.01	0.96	0.99	1.06	1.20	1.19

• PDF effect are not presented but the mass shifts calculated using CTEQ6.1 [J. Pumplin et al JHEP07, 012 (2002)] method are also below statistical errors.

• The effect of $\mathrm{ES}=0.5\%$ for "Standard Method" is huge $>270\,\mathrm{MeV},$ the Standard

Candle method can reduce it to $\sim 15\pm 6.0\,{
m MeV}$ with $\chi^2=$ 0.95, nbof= 200.

- ▶ s_1 and s_2 are CM-energy of the beam $\sqrt{s_1} = \frac{M_W}{M_Z} \sqrt{s_2}$. ⇒ the momentum fractions of the partons producing Z^0 and Ws are equal
- at the energy √s₁ the coil current has been rescaled down by the factor M_W/M_Z.
 ⇒ the distribution of the curvature radius (ρ_l) for charged leptons originating from the decays of the Z⁰ and W are the same.

ΔM_w [MeV]	ES = 0.05%	ES = -0.05%	RF = 0.7	RF = 1.3	$\Delta kT = -1[{ m GeV}]$	$\Delta kT = +1[{ m GeV}]$
Standard	-29 ± 1.8	25 ± 1.8	14.1 ± 1.8	-22.8 ± 1.8	> 31	> 40
Simple Z Candle	-19 ± 4.91	15 ± 4.9	> 50	> 77	> 66	> 76
Z candle	0.4 ± 5.9	3.1 ± 5.9	6.6 ± 5.9	-3.7 ± 5.9	17.7 ± 6.11	-9.77 ± 6.0
$\chi^{2}/200$	1.01	0.96	0.99	1.06	1.20	1.19

• PDF effect are not presented but the mass shifts calculated using CTEQ6.1 [J. Pumplin et al JHEP07, 012 (2002)] method are also below statistical errors.

 \bullet The effect of $\mathrm{ES}=0.5\%$ for "Standard Method" is huge $>270\,\text{MeV},$ the Standard

Candle method can reduce it to $\sim 15\pm 6.0\,{
m MeV}$ with $\chi^2=$ 0.95, nbof= 200.

▶ s_1 and s_2 are CM-energy of the beam $\sqrt{s_1} = \frac{M_W}{M_Z} \sqrt{s_2}$. ⇒ the momentum fractions of the partons producing Z^0 and Ws are equal

at the energy √s₁ the coil current has been rescaled down by the factor M_W/M_Z.
 ⇒ the distribution of the curvature radius (ρ_l) for charged leptons originating from the decays of the Z⁰ and W are the same.

ΔM_w [MeV]	ES = 0.05%	ES = -0.05%	RF = 0.7	RF = 1.3	$\Delta kT = -1[{ m GeV}]$	$\Delta kT = +1[\text{GeV}]$
Standard	-29 ± 1.8	25 ± 1.8	14.1 ± 1.8	-22.8 ± 1.8	> 31	> 40
Simple Z Candle	-19 ± 4.91	15 ± 4.9	> 50	> 77	> 66	> 76
Z candle	0.4 ± 5.9	3.1 ± 5.9	6.6 ± 5.9	-3.7 ± 5.9	17.7 ± 6.11	-9.77 ± 6.0
$\chi^{2}/200$	1.01	0.96	0.99	1.06	1.20	1.19

• PDF effect are not presented but the mass shifts calculated using CTEQ6.1 [J. Pumplin et al JHEP07, 012 (2002)] method are also below statistical errors.

 \bullet The effect of $\mathrm{ES}=0.5\%$ for "Standard Method" is huge $>270\,\text{MeV},$ the Standard

Candle method can reduce it to \sim 15 \pm 6.0 MeV with χ^2 = 0.95, nbof= 200.

ΔM_w [MeV]	ES = 0.05%	ES = -0.05%	RF = 0.7	RF = 1.3	$\Delta kT = -1[\text{GeV}]$	$\Delta kT = +1$ [GeV]
Standard	-29 ± 1.8	25 ± 1.8	14.1 ± 1.8	-22.8 ± 1.8	> 31	> 40
Simple Z Candle	-19 ± 4.91	15 ± 4.9	> 50	> 77	> 66	> 76
Z candle	0.4 ± 5.9	3.1 ± 5.9	6.6 ± 5.9	-3.7 ± 5.9	17.7 ± 6.11	-9.77 ± 6.0
$\chi^{2}/200$	1.01	0.96	0.99	1.06	1.20	1.19

ES = 0.5% for "Standard Method": > 270 MeV, the Z Candle method: $\sim 15 \pm 6.0$ MeV!! ($\chi^2 = 0.95$)

• The remaining QCD asymmetries:

which are reflected by the height values of the k_T in the Table we correct by C_{QCD} factor which can be measured rather then modeled using MC simulation.

$$C_{QCD} = \frac{\int_{M_Z - 3\Gamma_Z}^{M_Z + 3\Gamma_Z} N^{l+l-}(s_2, i(s_2), M^{l+l-}) \, dM^{l+l-}}{\int_{M_W - 3\Gamma_W}^{M_W + 3\Gamma_W} f_{BW}(s^{l+l-}; M_W, \Gamma_W) \, w_{EW} \, N^{l+l-}(s_1, i(s_1), M^{l+l-}) \, dM^{l+l-}}$$

Each event having a reconstructed invariant mass in the latter region is weighted by the Breit–Wigner function

$$f_{BW}(s^{l+l-}; M_W, \Gamma_W) = \frac{1}{\pi} \frac{M_W \Gamma_W}{(s^{l+l-} - M_W^2)^2 + M_W^2 \Gamma_W^2},$$

where $s^{l+l-} = (M^{l+l-})^2$, and by the QCD-independent normalisation factor w_{EW} .

$$C_{QCD} = \frac{\int_{M_Z - 3\Gamma_Z}^{M_Z + 3\Gamma_Z} N^{l+l-}(s_2, i(s_2), M^{l+l-}) dM^{l+l-}}{\int_{M_W - 3\Gamma_W}^{M_W + 3\Gamma_W} f_{BW}(s^{l+l-}; M_W, \Gamma_W) w_{EW} N^{l+l-}(s_1, i(s_1), M^{l+l-}) dM^{l+l-}}$$

Results for "Z candle" with C_{QCD} factor:

ΔM_w [MeV]	ES = 0.05%	ES = -0.05%	RF = 0.7	RF = 1.3	$\Delta kT = +1$ [GeV]	$\Delta kT = -1[{ m GeV}]$
Z candle	0.4 ± 5.9	3.1 ± 5.9	6.6 ± 5.9	-3.7 ± 5.9	17.7 ± 6.11	-9.77 ± 6.0
Z candle, C _{QCD}	-2.6 ± 6.2	1.0 ± 6.0	3.3 ± 5.9	-6.3 ± 6.3	-0.6 ± 6.0	-3.8 ± 6.1
$\chi^2/ndof$	1.1	1.0	1.0	1.2	1.2	1.3

even larger shifts of K_T are also in the statistical errors:

ΔM_w [MeV]	$\Delta kT = -4$	$\Delta kT = -2$	$\Delta kT = -1$	$\Delta kT = 1$	$\Delta kT = 2$	$\Delta kT = 4[\text{GeV}]$
Z candle C _{QCD}	14.6 ± 6.1	5.6 ± 6.0	-0.6 ± 6.0	-3.8 ± 6.1	-6.8 ± 6.2	-26.7 ± 6.3
$\chi^2/ndof$	1.3	1.4	1.2	1.3	1.1	1.5

Then using PYTHIA² we opened

Pandora's box...

but this is the next part of this story soon on your arXiv mirror!:)

 2 and WINHAC + ZINHAC

Search

Login Preterences Help/Guide About Truc Timeline New Tucket Search

Description of the project

Related Talks and Publications

- "Z-boson as "the standard candle" for high precision W-boson physics at LHC" → arXiv
- "Measurement of M_w⁺ · M_w⁻ at LHC^{*} · ⊖ arXiv.
- · "W-boson mass measurement at LHC" available soon.

Help and User Guides

1. FAQ

 Buy reporting / Insking Anyone can view the list of bug tickets cick View Tickets in the biblear. To submit new bug reports, however, you will first need to register with the ZIMMC authors. Send a preferred login and password to andreg sidemick accent. Or Beardo not send a password that you use for anything important. The current login mechanism transmits it in clear text. After registration, you can use your login name to file new bug reports. First, cick on Login in the tite bar, the first list is the registration transmits.

Download

1. SVN repository

Zakończono

two students: Kamil Sobol and Piotr Stecko

3. Conclusion

Conclusion:

 \bullet We considered the main systematic errors which were the most important in previous measurements of W mass

ΔM_w [MeV]	ES = 0.05%	ES = -0.05%	RF = 0.7	RF = 1.3	$\Delta kT = -1[\text{GeV}]$	$\Delta kT = +1[\text{GeV}]$
Z Candle, C _{QCD}	-2.6 ± 6.2	1.0 ± 6.0	3.3 ± 5.9	-6.3 ± 6.3	-0.6 ± 6.0	-3.8 ± 6.1
χ^2/ndof	1.1	1.0	1.0	1.2	1.2	1.3
Standard	-29 ± 1.8	25 ± 1.8	14.1 ± 1.8	-22.8 ± 1.8	> 31	> 40
Simple Z Candle	-19 ± 4.91	15 ± 4.9	> 50	> 77	> 66	> 76

 \bullet the results are mainly constrained by statistical errors but studies were preform for one year of low luminosity $10 fb^-1$ run.

- the next part shows very interesting results (soon o arXiv).
- all this tricks are feasible at LHC (maybe in the mature stage ...)

Thank you for the attention!