Inclusive $W\gamma$ Production at the LHC
A Study of Monte Carlo Event Generators of Interest

Devdatta Majumder

TIFR, Mumbai

January, 2009
1 Introduction and Overview
 - Multiboson Studies at hadron colliders
 - What are we interested in measuring
 - Essence of $W\gamma$ process

2 Event Generation
 - Baur Monte Carlo
 - Generator level studies

3 Prospective studies while at Lund
 - Pythia-Baur_NLO Comparison
Introduction

- Measurement of triple gauge boson couplings (TGC) $V_1 V_2 V_3$, where $V_{1,2,3} \equiv \gamma, W$ or Z, is an important test of the gauge structure of the Standard Model (SM).

- The triple and quartic gauge couplings are among the least studied features of the Standard Model till date.

- The nature of the gauge boson couplings, eg. $WW\gamma$, WWZ vertices are may be different in physics beyond the Standard Model. These could be due to compositeness of the W,Z bosons or radiative loop corrections involving new particles.

- Anomalous structure of triple gauge vertices like WWV ($V \equiv \gamma, Z$) were first studied in LEP.

- The di-boson production rate will be reasonably high at the LHC, even under low energy and low luminosity conditions.

- In recent years, CDF and D0 has reported studies of WZ, ZZ, $W\gamma$ and $Z\gamma$ processes. With the advent of LHC data the limits on anomalous couplings are expected to improve by order of magnitude.
Multiboson Studies at hadron colliders

Cross-sections of several Standard Model processes at the LHC, including diboson production

- Multiboson production at hadron collider:

 \[q\bar{q}' \rightarrow W^* \rightarrow W\gamma \text{: } WW\gamma \text{ vertices} \]

 \[q\bar{q}' \rightarrow W^* \rightarrow WZ \text{: } WWZ \text{ vertices} \]

 \[q\bar{q} \rightarrow Z/\gamma^* \rightarrow WW \text{: } WW\gamma, WWZ \text{ vertices} \]

 \[q\bar{q} \rightarrow Z/\gamma^* \rightarrow Z\gamma \text{: } ZZ\gamma, Z\gamma\gamma \text{ vertices} \]

 \[q\bar{q} \rightarrow Z/\gamma^* \rightarrow ZZ \text{: } ZZ\gamma, ZZZ \text{ vertices} \]

- Leptonic (e, \(\mu \)) decay modes of \(W \) and \(Z \) provide the cleanest signatures in a hadron collider environment. Experimentally easy to identify and trigger; can be measured with high resolution as well.

- CMS experiment at the LHC has very good capabilities for electron, muon and photon detection.
What are we interested in measuring

- Measure the total and differential cross-section for the process
 \[pp \rightarrow W\gamma X \text{ with } W \rightarrow \mu\nu_{\mu} \]

- We need to choose a parameter, the differential cross-section with respect to which is most sensitive to deviations from the Standard Model. Apriori, the photon transverse momentum, \(p_T^{\gamma} \) seems to be a good choice.

- Measure the radiation amplitude zero:
 - Zero amplitude at \(\cos \theta^* = 1/3 \) for \(W^+ \) and \(\cos \theta^* = -1/3 \) for \(W^- \).

- Measure the triple gauge boson coupling \(WW\gamma \) as parametrized by \(\lambda \) and \(\kappa \) which are related to the electric and magnetic dipole moments of the \(W \)-boson respectively.
Essence of $W\gamma$ process - I

- TGC Effective Lagrangian

$$\mathcal{L}_{WWV} = -i\epsilon \left[W_{\mu\nu} \mathcal{V}_{\mu} V^\nu - W_{\mu}^\dagger V_{\nu} W_{\mu\nu}^\nu + \kappa V_{\mu} W_{\mu}^\dagger V^\mu \nu + \frac{\lambda V_{\nu}}{M_W^2} W_{\mu}^\dagger W_{\nu}^\lambda V^\nu \lambda \right]$$

where $V = \gamma, Z$.

- In SM: $\lambda_{V} = 0, \kappa_{V} = 1$

- Magnetic dipole moment:

$$\mu_W = \frac{e}{2M_W} (1 + \kappa + \lambda)$$

- Electric quadrupole moment:

$$Q_W = -\frac{e}{M_W^2} (\kappa - \lambda)$$

- Dipole moment $\sim 1/r^3$, and quad. mom. $\sim 1/r^4 \rightarrow$ can be probed with high energy.

- Unitarity violation avoided by using form factor:

$$\lambda(\hat{s}) \rightarrow \frac{\lambda(\hat{s})}{(1 + \hat{s}/\Lambda^2)^n}$$

- The Lagrangian contains terms respecting CP invariance only. CP-violating terms lead to additional two parameters $\tilde{\kappa}$ and $\tilde{\lambda}$. These terms are found to be small from measurement of neutron scattering cross-section in nuclear physics and are hence neglected here.
Essence of $W\gamma$ process - II

- **$W\gamma$ production at tree level and RAZ**

 ![Diagrams showing $W\gamma$ production]

- **RAZ** due to destructive interference among the processes shown.
- Related to Standard Model gauge structure; will not hold in BSM scenarios.

- Measurement of the cross-section at the LHC energy for $pp \rightarrow W\gamma X$ is one of the confirmatory tests of SM.
- $WW\gamma$ coupling involved only in the s-channel process.
- The last plot on the left shows the quark-gluon fusion diagram for production of a $W\gamma$ final state with a jet from the outgoing quark. Has large probability of occurrence at LHC energy. We use a jet veto on the final state to eliminate diagrams such as these.
- For probing RAZ, a promising variable is the charge-signed rapidity difference between the photon and the charged-lepton from W-decay: $Q^l \times |\eta^l - \eta^\gamma|$.
For understanding signal and background from collider data, Monte Carlo generated data have to be used.

We have chosen Baur’s Monte Carlo generator package for $W\gamma$ events for our study due to
- Matrix element calculation for the hard-scattering part.
- QCD Corrections available upto next-to-leading order.
- Anomalous couplings can be incorporated.

We use *Pythia* for showering and hadronization of Baur’s final state particles and for underlying events.
NLO QCD Diagrams included in Baur WGAMMA_NLO Monte Carlo
Generator level cuts on parameters and Plots

Gen Level Cuts

- $p_T(\gamma) > 5 \text{GeV}$
- $|\eta(\gamma)| < 10.0$
- $p_T(l) > 5 \text{GeV}$
- $|\eta(l)| < 10.0$
- $p_T(\nu) > 5 \text{GeV}$
- $p_T(\text{jets}) > 5 \text{GeV}$
- $|\eta(\text{jets})| < 10.0$
- $\Delta(R_{l\gamma}) > 0.05$
- $M_T(l\nu\gamma) > 10 \text{GeV}$

Lepton p_T spectra

W p_T Spectrum

Neutrino p_T spectra

Devdatta Majumder (TIFR, Mumbai)
MCNET meeting, Durham
January, 2009
Baur: Comparison of Factorization Scales

\(Q^2 = \frac{sH}{2} \)

\(Q^2 = sH \)

\(Q^2 = 2sH \)
One of the most important parameters in studying inclusive $W\gamma$ production at LHC is the photon p_T spectrum.

Sources of photon could be the hard scattering process, namely the $W\gamma$ production process, as well as underlying events and other hard scattering in the same event.

We hope to gain some understanding of the different processes leading to the production of a final-state photon.

This would also lead us to investigating the interplay between the different sources of photons in a p-on-p collision at LHC energies.
Comparion of Pythia with Baur_NLO matrix element generator
As a startup, we are comparing the output of Baur’s program, which is a matrix element generator, with Pythia, which is a parton shower generator.

Baur contains all QCD corrections to $O(\alpha_S)$.

We expect that the tree level calculation of Baur to match Pythia’s outcome when ISR s switched off.

We compare the effect of gluon radiation in Baur's program with the effect of ISR in Pythia.

We compare the p_T spectrum of the photon and effects of gluon radiation/ISR on the $W\gamma$ system.
Standard Model Parameters and Kinematic Cuts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF</td>
<td>CTEQ5l</td>
</tr>
<tr>
<td>Q^2_f</td>
<td>\hat{s}</td>
</tr>
<tr>
<td>α_s</td>
<td>0.1000</td>
</tr>
<tr>
<td>M_W</td>
<td>80.41 GeV</td>
</tr>
<tr>
<td>M_Z</td>
<td>91.188 GeV</td>
</tr>
<tr>
<td>$\sin^2\theta_W$</td>
<td>0.222247</td>
</tr>
<tr>
<td>α_{em}</td>
<td>0.007758</td>
</tr>
<tr>
<td>M_{top}</td>
<td>172.</td>
</tr>
</tbody>
</table>

Pythia Gen Level Cut: CKIN(3) = 5.0 GeV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ p_T</td>
<td>5.0 GeV</td>
</tr>
<tr>
<td>Charged lepton p_T</td>
<td>5.0 GeV</td>
</tr>
<tr>
<td>Photon rapidity</td>
<td>8.0</td>
</tr>
<tr>
<td>Charged lepton rapidity</td>
<td>8.0</td>
</tr>
<tr>
<td>Jet p_T</td>
<td>5.0 GeV</td>
</tr>
<tr>
<td>Jet rapidity</td>
<td>8.0</td>
</tr>
<tr>
<td>$\Delta R(\gamma, \text{lepton})$</td>
<td>0.05</td>
</tr>
<tr>
<td>Cluster(W, γ) transverse mass</td>
<td>10.0 GeV</td>
</tr>
<tr>
<td>Fraction of hadronic energy in a cone around the photon</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Baur WGAMMA:

\[\frac{dN}{dp_T^\gamma} \text{ (pb)/2GeV} \]

- \(L = 200\text{pb}^{-1} \)
- Baur with final state radiation

Pythia6

\[\frac{dN}{dp_T^\gamma} \text{ (pb)/2GeV} \]

- \(L = 200\text{pb}^{-1} \)
- Pythia \(W\gamma \) with ISR and MSTP(68)=3
- Pythia \(W\gamma \) with ISR MSTP(68)=2

- \(L = 200\text{pb}^{-1} \)
- Baur WGAMMA tree level

- \(L = 200\text{pb}^{-1} \)
- Pythia \(W\gamma \) no ISR
"K-factors" from Baur and Pythia

Baur WGAMMA

Pythia6

\[\frac{p_T^{\gamma}}{p_T^{\gamma,\text{ISR}}} \]

\[\text{MSTP}(68) = 3 \text{ (default value)} \]

\[\text{MSTP}(68) = 2 \]
For process with a jet (gluon) in the final state, p_T of the W and the photon is not back-to-back and $p_T^W + p_T^\gamma$ will be opposite to the p_T of the emitted jet.

On the left are the plots of the sum of the photon and W p_T for both Baur and Pythia.

We see that Baur gives a much harder p_T spectrum for the emitted jet than Pythia, even when Pythia is configured such that the gluon from ISR has no upper limit on its p_T.
Baur-Pythia Comparison contd....

- The distributions show the p_T of the photon vs that of the W in the three-body final state: i.e. when we have a gluon jet in the event.
- The distribution is asymmetric yet we do not have any apriori reason for this.
- Work in progress....
The other aspect of our study would be to try comparing Pythia6 generator with the new version of Pythia.

Pythia 8 also provides the opportunity to simulate multiple hard interactions. This should be interesting to study as well.

Further, we want to gain an understanding of the matching between a matrix element calculator, eg. Baur WGAMMA generator and a parton shower generator, eg. Pythia.