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Fermionic mass structure

quarks

mu : mc : mt ∼ λ8
c : λ4

c : 1

md : ms : mb ∼ λ4
c : λ2

c : 1
CKM ∼




1 λc λ3
c

λc 1 λ2
c

λ3
c λ2

c 1




⇒ quark masses and mixing are hierarchical

leptons

me : mµ : mτ ∼ λ4 or 5
c : λ2

c : 1

mν1
: mν2

: mν3
∼





λ ≥ 1
c : λc : 1

1 : 1 : λ ≥ 1
c

1 : 1 : 1

MNSP ∼




0.8 0.5 < 0.2

0.4 0.6 0.7

0.4 0.6 0.7




⇒ neutrino sector is different
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Tri-bimaximal mixing

MNSP ≈ UT B ≡




√
2
3
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3
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2

− 1√
6

1√
3

1√
2




⇒





MNSP-angles tri-bimax. 3σ exp.

sin2 θ12 : 0.33 0.24 − 0.40

sin2 θ23 : 0.50 0.34 − 0.68

sin2 θ13 : 0 ≤ 0.041
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Effective neutrino mass matrix

• in basis where charged lepton mass matrix is diagonal

Mν ∼ MT B =




α β β

β γ α + β − γ

β α + β − γ γ




• How can we obtain such relations between entries of mass matrix?

→ unify families into multiplets of a symmetry group G (assignment)

→ break G spontaneously (vacuum alignment)

→ construct invariants of G inserting vacuum structure

G = non-Abelian finite group
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Abelian finite groups: ZN

• ZN = {1 , e2πi 1
N , e2πi 2

N , ... , e2πi N−1
N }

• N elements

• one generator a ∈ ZN (e.g. a = e2πi/N)

• group operation = multiplication of complex numbers

• only one-dimensional irreps

Anomaly-free discrete family symmetries 5 of 25



Non-Abelian finite groups, e.g. S3

group multiplication table:
1 a1 a2 b1 b2 b3

1 1 a1 a2 b1 b2 b3

a1 a1 a2 1 b2 b3 b1

a2 a2 1 a1 b3 b1 b2

b1 b1 b3 b2 1 a2 a1

b2 b2 b1 b3 a1 1 a2

b3 b3 b2 b1 a2 a1 1

generators and the presentation:

choose generators a ≡ a1 and b ≡ b1 ⇒ a2 = a2, b2 = ab, b3 = ba

< a , b | a3 = b2 = 1 , bab−1 = a−1 > defines the group uniquely
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Irreducible representations

irreducible representations:

1 : a = 1, b = 1

1′ : a = 1, b = −1

2 : a =

(
e2πi/3 0

0 e−2πi/3

)
, b =

(
0 1

1 0

)

conjugacy classes:

1 C1(1) = {g 1 g−1 | g ∈ S3} = {1}

2 C2(a) = {g a g−1 | g ∈ S3} = {a, a2}

3 C3(b) = {g b g−1 | g ∈ S3} = {b, ab, ba}

number of classes = number of irreps

number of elements =
∑

(dimension of irrep)2
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Kronecker products

general formula:

r ⊗ s = d(r, s, t) t , d(r, s, t) = 1
N

∑
i ni χ

[r]
i χ

[s]
i χ̄

[t]
i

- N = number of group elements

- ni = number of elements in conjugacy class Ci

- character χ = trace of the matrix representation of element g

S3 1C1(1) 2C2(a) 3C3(b)

χ[1] 1 1 1

χ[1′] 1 1 −1

χ[2] 2 −1 0





1′ ⊗ 1′ = 1

1′ ⊗ 2 = 2

2 ⊗ 2 = 1 + 1′ + 2
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Possible discrete family symmetries G

• symmetry group: SM × G

• three families

• G should have two- or three-dimensional irreps

• G is a finite subgroup of either

◦ SU(3) e.g. PSL2(7), Z7 ⋊ Z3, ∆(3n2), ∆(6n2)

◦ SO(3) e.g. A4, S4, A5, Dn

◦ SU(2) e.g. T ′, Q2n

example: A4 (irreps 1, 1′, 1′, 3)

L ∼ 3 , Ec ∼ 1 + 1′ + 1′ , N c ∼ 3
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Gauging discrete symmetries

• discrete symmetries might be broken badly by quantum gravity effects

• as remnants of a gauge symmetry they are protected

−→ “discrete gauge symmetry”

gauge symmetry

G ⊃ G

discrete symmetry

A N O M A L I E S
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Possible anomalies

SU(3)C × SU(2)W × U(1)Y × G

• G = U(1)

SU(3)C − SU(3)C − U(1) U(1)Y − U(1)Y − U(1)

SU(2)W − SU(2)W − U(1) U(1)Y − U(1) − U(1)

Gravity − Gravity − U(1) U(1) − U(1) − U(1)

−→ constraints on possible ZN ⊂ U(1) symmetries (Ibáñez & Ross)

• G = SU(3)

SU(3) − SU(3) − SU(3) SU(3) − SU(3) − U(1)Y

−→ What can we extract in this case ?
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Recap: G = U(1)

• formulate anomaly equations for G with U(1) charges zi

structure :
∑

i

zi = 0

• insert U(1) charges in terms of discrete charges qi: zi = qi mod N
∑

i

qi = 0 mod N

• separate light and heavy fermions (ZN invariant mass term)
∑

i=light

qi +
∑

i=heavy

qi

︸ ︷︷ ︸
0 mod N or N

2

= 0 mod N

=⇒
∑

i=light

qi = 0 mod N or
N

2
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Cubic anomaly for G = SU(3)

• formulate cubic anomaly equation for G with SU(3) irreps ρ
∑

ρ

A(ρ) = 0 A(ρ) = cubic Dynkin index

• replace all SU(3) parameters: ρ →
∑

i ri and A(ρ) =
∑

i Ã(ri) mod NA

∑

i

Ã(ri) = 0 mod NA Ã(ri) = discrete cubic index

• separate light and heavy fermions (G invariant mass term)
∑

i=light

Ã(ri) +
∑

i=heavy

Ã(ri)

︸ ︷︷ ︸
0 mod N ′

A

= 0 mod NA

=⇒
∑

i=light

Ã(ri) = 0 mod N ′
A
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Mixed anomaly for G = SU(3)

• formulate mixed anomaly equation for G with SU(3) irreps ρ
∑

ρ

ℓ(ρ) · Y (ρ) = 0 ℓ(ρ) = quadratic Dynkin index

• replace all SU(3) parameters: ρ →
∑

i ri and ℓ(ρ) =
∑

i ℓ̃(ri) modNℓ

∑

i

ℓ̃(ri) · Y (ri) = 0 mod Nℓ ℓ̃(ri) = discrete quadratic index

• separate light and heavy fermions (G invariant mass term)
∑

i=light

ℓ̃(ri) · Y (ri) +
∑

i=heavy

ℓ̃(ri) · Y (ri)

︸ ︷︷ ︸
0 mod N ′

ℓ

= 0 mod Nℓ

=⇒
∑

i=light

ℓ̃(ri) · Y (ri) = 0 mod N ′
ℓ
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In the following: G = Z7 ⋊ Z3 (T7 )
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Embedding T7 into SU(3)

irreps of T7:

3, 3, 1, 1′, 1′

some T7 Kronecker products:

3⊗ 3 = (3 + 3)s + 3a

3⊗ 3 = 1 + 1′ + 1′ + 3 + 3

in SU(3):

3⊗ 3 = 6s + 3a

3⊗ 3 = 1 + 8

SU(3) ⊃ T7

(10) : 3 = 3

(01) : 3 = 3

(20) : 6 = 3 + 3

(11) : 8 = 1′ + 1′ + 3 + 3

(30) : 10 = 1 + 3 + 2 · 3

(21) : 15 = 1 + 1′ + 1′ + 2 · (3 + 3)

(40) : 15′ = 1 + 1′ + 1′ + 2 · (3 + 3)

(05) : 21 = 1 + 1′ + 1′ + 3 · (3 + 3)

(13) : 24 = 1 + 1′ + 1′ + 3 · 3 + 4 · 3

(22) : 27 = 1 + 1′ + 1′ + 4 · (3 + 3)
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Irreps ρ of SU(3) and their indices

cubic index: Tr
({

T
[ρ]
a , T

[ρ]
b

}
T

[ρ]
c

)
= A(ρ) dabc

2

quadratic index: Tr
({

T
[ρ]
a , T

[ρ]
b

})
= ℓ(ρ) δab

Irreps ρ of SU(3) A(ρ) ℓ(ρ)

(10) : 3 1 1

(20) : 6 7 5

(11) : 8 0 6

(30) : 10 27 15

(21) : 15 14 20
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Irreps ri of T7 and their indices

• ri can originate from different irreps ρ of SU(3)

ρ −→
∑

i

ri

• define discrete indices Ã(ri), ℓ̃(ri) and NA, Nℓ such that:

A(ρ) =
∑

i

Ã(ri) mod NA

ℓ(ρ) =
∑

i

ℓ̃(ri) mod Nℓ

for all irreps ρ of SU(3)
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Discrete indices of T7

definition:

consistency:

Irreps ri

of T7

eA(ri)

(NA = 7)

eℓ(ri)

(Nℓ = 3)

1
′ x y

1′ −x 1 − y

3 1 1

3 −1 1

ρ
P

i
ri A(ρ)

P
i

eA(ri) ℓ(ρ)
P

i
eℓ(ri)

3 3 1 1 1 1

6 3 + 3 7 0 5 2

8 1
′ + 1′ + 3 + 3 0 0 6 3

10 1 + 3 + 2 · 3 27 −1 15 3

15 1 + 1
′ + 1′ + 2 · (3 + 3) 14 0 20 5
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Proving the assignment of discrete indices

• assign discrete indices to irreps ri using the decomposition of the smallest

irreps ρ of SU(3)

• proof by induction that this assignment is consistent for all higher irreps ρ

• make use of:

I(ρ ⊗ σ) = d(ρ) I(σ) + I(ρ) d(σ)

I = Dynkin index A or ℓ

d = dimension of irrep
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Discrete anomaly conditions

family symmetry SU(3) particles live in irreps ρ [normalization: Y (ρ) ∈ Z]

y

∑
ρ A(ρ) = 0

∑
ρ ℓ(ρ) · Y (ρ) = 0

family symmetry T7 particles live in irreps ri

• some acquire masses (heavy)

• some don’t (light)

∑
i=light Ãi +

∑
i=heavy Ãi = 0 mod NA

∑
i=light ℓ̃i Yi +

∑
i=heavy ℓ̃i Yi = 0 mod Nℓ
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Effect of heavy fermions

• T7 invariant mass terms: 1′ ⊗ 1′ , 3⊗ 3

• with G = T7: only Dirac particles can be massive

• contribution of heavy fermions to discrete anomalies:

3⊗ 3 :

2∑

i=1

Ãi = 0

2∑

i=1

ℓ̃i · Yi = 0

1′ ⊗ 1′ :

2∑

i=1

Ãi = 0

2∑

i=1

ℓ̃i · Yi = (2y − 1) · Y (1′)
!
= 0 mod 3

−→ no contribution if y = 1
2 or 2 (and integer hypercharge normalization)
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T7 example: Luhn, Nasri, Ramond [PLB 652,27 (2007)]

− all hypercharges are integer

− hypercharge normalization YQ = 1





∑
i=light Ãi = 0 mod 7

∑
i=light ℓ̃i Yi = 0 mod 3

type of fermion Q Uc Dc L Ec Nc

T7 irrep 3 3 3 3 3 3

# of fermions 6 3 3 2 1 1

hypercharge Y 1 −4 2 −3 6 0

eA(3) = 1

eℓ(3) = 1

∑

i=light

Ãi = 6 + 3 + 3 + 2 + 1 + 1 = 16 6= 0 mod 7

∑

i=light

ℓ̃i · Yi = 6 · 1 + 3 · (−4) + 3 · 2 + 2 · (−3) + 1 · 6 + 1 · 0 = 0
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What does it mean?

discrete cubic anomaly is not satisfied

• light particle content of the model is incomplete

• some fermions which transform non-trivially under G have to be added

• these fermions must be massless at energies above E6 G

• if E6 G ∼ EWSB scale −→ these fermions might show up in experiments

discrete mixed anomaly is not satisfied

• light particle content of the model is incomplete (as above)

or

• some heavy fermions carry “fractional” hypercharge, i.e.
Yheavy

YQ
/∈ Z

−→ electrically charged dark matter
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Conclusion

• neutrino mixing motivates non-Abelian discrete family symmetry G

• many candidates for G – many more models

• require gauge origin of G ⊂ G = SU(3), SO(3), SU(2)

• discuss remnants of the high-energy anomaly conditions

• introduce discrete indices (individually for each group G)

• discrete anomaly conditions

• some models might be incomplete in their light particle content

Anomaly-free discrete family symmetries 25 of 25



Different embeddings

• some groups G are subgroups of different continuous groups G

• e.g. A4 ⊂ SU(3) or A4 ⊂ SO(3)

• Is it possible to define discrete indices independently from the embedding?



Embedding A4 into SU(3)

discrete indices of A4:
Irreps ri

of A4

eℓ(ri)

(Nℓ = 12)

eA(ri)

(NA = 2)

1 0 0

1
′ 2 0

1′ 2 0

3 1 1

ρ
P

i
ri ℓ(ρ)

P
i

eℓ(ri) A(ρ)
P

i
eA(ri)

3 3 1 1 1 1

6 1 + 1
′ + 1′ + 3 5 5 7 1

8 1
′ + 1′ + 2·3 6 6 0 2

10 1 + 3·3 15 3 27 3

15 1 + 1
′ + 1′ + 4·3 20 8 14 4



Embedding A4 into SO(3)

discrete indices of A4:
Irreps ri

of A4

eℓ(ri)

(Nℓ = 12)

1 0

1
′ 2

1′ 2

3 1

ρ
P

i
ri ℓ(ρ)

P
i

eℓ(ri)

3 3 1 1

5 1
′ + 1′ + 3 5 5

7 1 + 2·3 14 2

9 1 + 1
′ + 1′ + 2·3 30 6

11 1
′ + 1′ + 3·3 55 7


