Durham – March 19th, 2009 #### Christoph Luhn (University of Southampton) in collaboration with Pierre Ramond (University of Florida) # Anomaly-free discrete family symmetries - arXiv:0805.1736 [JHEP 07 (2008) 085] - arXiv:0807.1749 [PLB 670 (2009) 390] # Outline - motivation - basic mathematical concepts - gauge origin & anomalies - embedding finite into continuous groups - discrete indices - discrete anomaly conditions #### Fermionic mass structure # quarks $$m_u: m_c: m_t \sim \lambda_c^8: \lambda_c^4: 1$$ $$m_d: m_s: m_b \sim \lambda_c^4: \lambda_c^2: 1$$ $$CKM \sim \begin{pmatrix} 1 & \lambda_c & \lambda_c^3 \\ \lambda_c & 1 & \lambda_c^2 \\ \lambda_c^3 & \lambda_c^2 & 1 \end{pmatrix}$$ \Rightarrow quark masses and mixing are hierarchical ## leptons $$m_e: m_{\mu}: m_{\tau} \sim \lambda_c^{4 \text{ or } 5}: \lambda_c^2: 1$$ $$m_{\nu_1}: m_{\nu_2}: m_{\nu_3} \sim \begin{cases} \lambda_c^{\geq 1}: \lambda_c: 1 \\ 1: 1: \lambda_c^{\geq 1} \end{cases} \quad \text{MNSP} \sim \begin{pmatrix} 0.8 & 0.5 & < 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$ $$1: 1: 1$$ \Rightarrow neutrino sector is different ## Tri-bimaximal mixing MNSP $$\approx U_{TB} \equiv \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$ $$\Rightarrow \begin{cases} \frac{\text{MNSP-angles tri-bimax.}}{\sin^2 \theta_{12}:} & 0.33 & 0.24 - 0.40 \\ \sin^2 \theta_{23}: & 0.50 & 0.34 - 0.68 \\ \sin^2 \theta_{13}: & 0 & \leq 0.041 \end{cases}$$ #### Effective neutrino mass matrix • in basis where charged lepton mass matrix is diagonal $$M_{\nu} \sim M_{\mathcal{TB}} = \begin{pmatrix} \alpha & \beta & \beta \\ \beta & \gamma & \alpha + \beta - \gamma \\ \beta & \alpha + \beta - \gamma & \gamma \end{pmatrix}$$ - How can we obtain such relations between entries of mass matrix? - \rightarrow unify families into multiplets of a symmetry group \mathcal{G} (assignment) - \rightarrow break \mathcal{G} spontaneously (vacuum alignment) - \rightarrow construct invariants of \mathcal{G} inserting vacuum structure G = non-Abelian finite group ## Abelian finite groups: \mathcal{Z}_N • $$\mathcal{Z}_N = \{1 , e^{2\pi i \frac{1}{N}} , e^{2\pi i \frac{2}{N}} , \dots, e^{2\pi i \frac{N-1}{N}} \}$$ - N elements - one generator $a \in \mathcal{Z}_N$ (e.g. $a = e^{2\pi i/N}$) - group operation = multiplication of complex numbers - only one-dimensional irreps ## Non-Abelian finite groups, e.g. S_3 #### group multiplication table: | | 1 | a_1 | a_2 | b_1 | b_2 | b_3 | |-------|-------|-------|-------|-----------------------------|-------|-------| | 1 | 1 | a_1 | a_2 | b_1 | b_2 | b_3 | | a_1 | a_1 | a_2 | 1 | b_2 b_3 1 a_1 a_2 | b_3 | b_1 | | a_2 | a_2 | 1 | a_1 | b_3 | b_1 | b_2 | | b_1 | b_1 | b_3 | b_2 | 1 | a_2 | a_1 | | b_2 | b_2 | b_1 | b_3 | a_1 | 1 | a_2 | | b_3 | b_3 | b_2 | b_1 | a_2 | a_1 | 1 | #### generators and the presentation: choose generators $a \equiv a_1$ and $b \equiv b_1 \implies a_2 = a^2$, $b_2 = ab$, $b_3 = ba$ $\langle a, b \mid a^3 = b^2 = 1, bab^{-1} = a^{-1} \rangle$ defines the group uniquely ## Irreducible representations #### irreducible representations: 1: $$a = 1$$, $b = 1$ 1': $a = 1$, $b = -1$ 2: $a = \begin{pmatrix} e^{2\pi i/3} & 0 \\ 0 & e^{-2\pi i/3} \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ #### conjugacy classes: $$1 C_1(1) = \{g \, 1 \, g^{-1} \, | \, g \in \mathcal{S}_3\} = \{1\}$$ $$2 C_2(a) = \{g \, a \, g^{-1} \, | \, g \in \mathcal{S}_3\} = \{a, a^2\}$$ $$3 C_3(b) = \{g \, b \, g^{-1} \, | \, g \in \mathcal{S}_3\} = \{b, ab, ba\}$$ number of classes = number of irreps number of elements = \sum (dimension of irrep)² #### Kronecker products #### general formula: $$\mathbf{r} \otimes \mathbf{s} = d(\mathbf{r}, \mathbf{s}, \mathbf{t}) \mathbf{t}$$, $d(\mathbf{r}, \mathbf{s}, \mathbf{t}) = \frac{1}{N} \sum_{i} n_{i} \chi_{i}^{[\mathbf{r}]} \chi_{i}^{[\mathbf{s}]} \bar{\chi}_{i}^{[\mathbf{t}]}$ - -N = number of group elements - n_i = number of elements in conjugacy class C_i - character χ = trace of the matrix representation of element g ## Possible discrete family symmetries \mathcal{G} - symmetry group: $SM \times \mathcal{G}$ - three families - ullet Should have two- or three-dimensional irreps - \bullet \mathcal{G} is a finite subgroup of either $$\circ$$ $SU(3)$ e.g. $\mathcal{PSL}_2(7)$, $\mathcal{Z}_7 \rtimes \mathcal{Z}_3$, $\Delta(3n^2)$, $\Delta(6n^2)$ $$\circ$$ $SO(3)$ e.g. \mathcal{A}_4 , \mathcal{S}_4 , \mathcal{A}_5 , \mathcal{D}_n $$\circ$$ $SU(2)$ e.g. \mathcal{T}' , \mathcal{Q}_{2n} example: \mathcal{A}_4 (irreps 1, 1', $\overline{\mathbf{1}}'$, 3) $$L \sim 3$$, $E^c \sim 1 + 1' + \overline{1'}$, $N^c \sim 3$ ## Gauging discrete symmetries - discrete symmetries might be broken badly by quantum gravity effects - as remnants of a gauge symmetry they are protected - → "discrete gauge symmetry" $G \supset \mathcal{G}$ gauge symmetry discrete symmetry ANOMALIES #### Possible anomalies $$SU(3)_C \times SU(2)_W \times U(1)_Y \times G$$ $\bullet \quad G = U(1)$ $$SU(3)_C - SU(3)_C - U(1)$$ $U(1)_Y - U(1)_Y - U(1)_Y$ $$SU(2)_W - SU(2)_W - U(1)$$ $U(1)_Y - U(1) - U(1)$ Gravity – Gravity – $$U(1)$$ $U(1) - U(1) - U(1)$ - \longrightarrow constraints on possible $\mathcal{Z}_N \subset U(1)$ symmetries (Ibáñez & Ross) - $\bullet \quad G = SU(3)$ $$SU(3) - SU(3) - SU(3) - SU(3) - SU(3) - U(1)_Y$$ → What can we extract in this case? # Recap: G = U(1) • formulate anomaly equations for G with U(1) charges z_i structure: $$\sum_{i} z_{i} = 0$$ • insert U(1) charges in terms of discrete charges q_i : $z_i = q_i \mod N$ $$\sum_{i} q_i = 0 \bmod N$$ • separate light and heavy fermions (\mathcal{Z}_N invariant mass term) $$\sum_{i=\text{light}} q_i + \sum_{i=\text{heavy}} q_i = 0 \mod N$$ $$0 \mod N \text{ or } \frac{N}{2}$$ $$\Longrightarrow \sum_{i=\text{light}} q_i = 0 \mod N \text{ or } \frac{N}{2}$$ ## Cubic anomaly for G = SU(3) • formulate cubic anomaly equation for G with SU(3) irreps ρ $$\sum_{\rho} A(\rho) = 0 \qquad A(\rho) = \text{cubic Dynkin index}$$ • replace all SU(3) parameters: $\rho \to \sum_i \mathbf{r_i}$ and $A(\rho) = \sum_i \widetilde{A}(\mathbf{r_i}) \mod N_A$ $$\sum_{i} \widetilde{A}(\mathbf{r_i}) = 0 \mod N_A \qquad \widetilde{A}(\mathbf{r_i}) = \text{discrete cubic index}$$ • separate light and heavy fermions (\mathcal{G} invariant mass term) $$\sum_{i=\text{light}} \widetilde{A}(\mathbf{r_i}) + \sum_{i=\text{heavy}} \widetilde{A}(\mathbf{r_i}) = 0 \mod N_A$$ $$\Longrightarrow \sum_{i=\text{light}} \widetilde{A}(\mathbf{r_i}) = 0 \mod N_A'$$ ## Mixed anomaly for G = SU(3) • formulate mixed anomaly equation for G with SU(3) irreps ρ $$\sum_{\boldsymbol{\rho}} \ell(\boldsymbol{\rho}) \cdot Y(\boldsymbol{\rho}) = 0 \qquad \qquad \ell(\boldsymbol{\rho}) = \text{quadratic Dynkin index}$$ - replace all SU(3) parameters: $\rho \to \sum_{i} \mathbf{r_i}$ and $\ell(\rho) = \sum_{i} \widetilde{\ell}(\mathbf{r_i}) \mod N_{\ell}$ $\sum_{i} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N_{\ell} \qquad \widetilde{\ell}(\mathbf{r_i}) = \text{discrete quadratic index}$ - separate light and heavy fermions (\mathcal{G} invariant mass term) $$\sum_{i=\text{light}} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) + \sum_{i=\text{heavy}} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N_{\ell}$$ $$\Longrightarrow \sum_{i=\text{light}} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N'_{\ell}$$ In the following: $$\mathcal{G} = \mathcal{Z}_7 \rtimes \mathcal{Z}_3$$ (\mathcal{T}_7) ## Embedding \mathcal{T}_7 into SU(3) #### irreps of \mathcal{T}_7 : $\mathbf{3},\ \overline{\mathbf{3}},\ \mathbf{1},\ \mathbf{1}',\ \overline{\mathbf{1}'}$ #### some \mathcal{T}_7 Kronecker products: $$\mathbf{3}\otimes\mathbf{3}=(\mathbf{3}+\overline{\mathbf{3}})_s+\overline{\mathbf{3}}_a$$ $$oldsymbol{3}\otimes \overline{oldsymbol{3}} = oldsymbol{1} + oldsymbol{1}' + \overline{oldsymbol{1}'} + oldsymbol{3} + \overline{oldsymbol{3}}$$ #### in SU(3): $${f 3}\otimes {f 3}={f 6}_s+{f \overline 3}_a$$ $$3\otimes \overline{3}=1+8$$ #### $SU(3) \supset \mathcal{T}_7$ $$(10): \mathbf{3} = \mathbf{3}$$ $$(01): \ \overline{\mathbf{3}} = \ \overline{\mathbf{3}}$$ $$(20): \mathbf{6} = \mathbf{3} + \overline{\mathbf{3}}$$ $$(11): 8 = \mathbf{1}' + \overline{\mathbf{1}'} + \mathbf{3} + \overline{\mathbf{3}}$$ $$(30): \mathbf{10} = \mathbf{1} + \mathbf{3} + 2 \cdot \overline{\mathbf{3}}$$ $$(21): \mathbf{15} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 2 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$ $$(40): \mathbf{15'} = \mathbf{1} + \mathbf{1'} + \overline{\mathbf{1'}} + 2 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$ $$(05): \mathbf{21} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 3 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$ $$(13): \mathbf{24} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 3 \cdot \mathbf{3} + 4 \cdot \overline{\mathbf{3}}$$ $$(22): \mathbf{27} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 4 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$ ## Irreps ρ of SU(3) and their indices cubic index: $$\operatorname{Tr}\left(\left\{T_a^{[\boldsymbol{\rho}]}, T_b^{[\boldsymbol{\rho}]}\right\} T_c^{[\boldsymbol{\rho}]}\right) = A(\boldsymbol{\rho}) \frac{d_{abc}}{2}$$ quadratic index: $$\operatorname{Tr}\left(\left\{T_a^{[\boldsymbol{\rho}]}, T_b^{[\boldsymbol{\rho}]}\right\}\right) = \ell(\boldsymbol{\rho}) \, \delta_{ab}$$ | Irreps ρ of $SU(3)$ | $A(oldsymbol{ ho})$ | $\ell(oldsymbol{ ho})$ | |--------------------------|---------------------|------------------------| | (10): 3 | 1 | 1 | | (20): 6 | 7 | 5 | | (11): 8 | 0 | 6 | | (30): 10 | 27 | 15 | | (21): 15 | 14 | 20 | #### Irreps r_i of \mathcal{T}_7 and their indices • $\mathbf{r_i}$ can originate from different irreps $\boldsymbol{\rho}$ of SU(3) $$oldsymbol{ ho} \; \longrightarrow \; \sum_i \mathbf{r_i}$$ • define discrete indices $\widetilde{A}(\mathbf{r_i})$, $\widetilde{\ell}(\mathbf{r_i})$ and N_A , N_ℓ such that: $$A(\boldsymbol{\rho}) = \sum_{i} \widetilde{A}(\mathbf{r_i}) \mod N_A$$ $$\ell(\boldsymbol{\rho}) = \sum_{i} \widetilde{\ell}(\mathbf{r_i}) \mod N_{\ell}$$ for all irreps ρ of SU(3) # Discrete indices of \mathcal{T}_7 definition: | Irreps $\mathbf{r_i}$ of \mathcal{T}_7 | $\widetilde{A}(\mathbf{r_i})$ $(N_A = 7)$ | $\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 3)$ | |--|---|---| | 1 ' | x | y | | $\overline{f 1'}$ | -x | 1-y | | 3 | 1 | 1 | | $\overline{3}$ | -1 | 1 | ## consistency: | ρ | $\sum_i \mathbf{r_i}$ | $A(oldsymbol{ ho})$ | $\sum_i \widetilde{A}(\mathbf{r_i})$ | $\ell(oldsymbol{ ho})$ | $\sum_i \widetilde{\ell}(\mathbf{r_i})$ | |----|---|---------------------|--------------------------------------|------------------------|--| | 3 | 3 | 1 | 1 | 1 | 1 | | 6 | $3+\overline{3}$ | 7 | 0 | 5 | 2 | | 8 | $1' + \overline{1'} + 3 + \overline{3}$ | 0 | 0 | 6 | 3 | | 10 | $1 + 3 + 2 \cdot \overline{3}$ | 27 | -1 | 15 | 3 | | 15 | $1 + 1' + \overline{1'} + 2 \cdot (3 + \overline{3})$ | 14 | 0 | 20 | 5 | ## Proving the assignment of discrete indices - assign discrete indices to irreps $\mathbf{r_i}$ using the decomposition of the smallest irreps $\boldsymbol{\rho}$ of SU(3) - ullet proof by induction that this assignment is consistent for all higher irreps $oldsymbol{ ho}$ - make use of: $$I(\boldsymbol{\rho} \otimes \boldsymbol{\sigma}) = d(\boldsymbol{\rho}) I(\boldsymbol{\sigma}) + I(\boldsymbol{\rho}) d(\boldsymbol{\sigma})$$ $I = \text{Dynkin index } A \text{ or } \ell$ d = dimension of irrep ## Discrete anomaly conditions family symmetry SU(3) particles live in irreps ρ [normalization: $Y(\rho) \in \mathbb{Z}$] $$\sum_{\boldsymbol{\rho}} A(\boldsymbol{\rho}) = 0 \qquad \sum_{\boldsymbol{\rho}} \ell(\boldsymbol{\rho}) \cdot Y(\boldsymbol{\rho}) = 0$$ family symmetry \mathcal{T}_7 particles live in irreps $\mathbf{r_i}$ - some acquire masses (heavy) - some don't (light) $$\sum_{i=\text{light}} \widetilde{A}_i + \sum_{i=\text{heavy}} \widetilde{A}_i = 0 \mod N_A$$ $$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i + \sum_{i=\text{heavy}} \widetilde{\ell}_i Y_i = 0 \mod N_\ell$$ $$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i + \sum_{i=\text{heavy}} \widetilde{\ell}_i Y_i = 0 \mod N_\ell$$ #### Effect of heavy fermions - \mathcal{T}_7 invariant mass terms: $\mathbf{1}' \otimes \overline{\mathbf{1}'}$, $\mathbf{3} \otimes \overline{\mathbf{3}}$ - with $\mathcal{G} = \mathcal{T}_7$: only Dirac particles can be massive - contribution of heavy fermions to discrete anomalies: $$\mathbf{3} \otimes \overline{\mathbf{3}}: \qquad \sum_{i=1}^{2} \widetilde{A}_{i} = 0 \qquad \sum_{i=1}^{2} \widetilde{\ell}_{i} \cdot Y_{i} = 0$$ $$\mathbf{1}' \otimes \overline{\mathbf{1}'}: \sum_{i=1}^{2} \widetilde{A}_i = 0 \qquad \sum_{i=1}^{2} \widetilde{\ell}_i \cdot Y_i = (2y-1) \cdot Y(\mathbf{1}') \stackrel{!}{=} 0 \mod 3$$ \longrightarrow no contribution if $y = \frac{1}{2}$ or 2 (and integer hypercharge normalization) ## T₇ example: Luhn, Nasri, Ramond [PLB 652,27 (2007)] - all hypercharges are integer - hypercharge normalization $Y_Q = 1$ $$\sum_{i=\text{light}} \widetilde{A}_i = 0 \mod 7$$ $$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i = 0 \mod 3$$ $$\sum_{i=\text{light}} \ell_i Y_i = 0 \mod 3$$ | type of fermion | Q | U^c | D^c | L | E^c | N^c | |-----------------------|---|-------|-------|----|-------|-------| | \mathcal{T}_7 irrep | 3 | 3 | 3 | 3 | 3 | 3 | | # of fermions | 6 | 3 | 3 | 2 | 1 | 1 | | hypercharge Y | 1 | -4 | 2 | -3 | 6 | 0 | $$\widetilde{A}(\mathbf{3}) = 1$$ $$\widetilde{\ell}(\mathbf{3}) = 1$$ $$\sum_{i=\text{light}} \widetilde{A}_i = 6+3+3+2+1+1 = 16 \neq 0 \mod 7$$ $$\sum_{i=\text{light}} \widetilde{\ell}_i \cdot Y_i = 6 \cdot 1 + 3 \cdot (-4) + 3 \cdot 2 + 2 \cdot (-3) + 1 \cdot 6 + 1 \cdot 0 = 0$$ #### What does it mean? #### discrete cubic anomaly is *not* satisfied - light particle content of the model is *incomplete* - \bullet some fermions which transform non-trivially under $\mathcal G$ have to be added - ullet these fermions must be massless at energies above $E_{\mathcal{G}}$ - if $E_{\mathcal{C}} \sim \text{EWSB}$ scale \longrightarrow these fermions might show up in experiments #### discrete mixed anomaly is not satisfied - light particle content of the model is *incomplete* (as above) or - some heavy fermions carry "fractional" hypercharge, i.e. $\frac{Y_{\text{heavy}}}{Y_Q} \notin \mathbb{Z}$ \longrightarrow electrically charged dark matter ## Conclusion - ullet neutrino mixing motivates non-Abelian discrete family symmetry ${\cal G}$ - many candidates for \mathcal{G} many more models - require gauge origin of $\mathcal{G} \subset G = SU(3), SO(3), SU(2)$ - discuss remnants of the high-energy anomaly conditions - introduce discrete indices (individually for each group \mathcal{G}) - discrete anomaly conditions - some models might be incomplete in their light particle content ## Different embeddings - ullet some groups ${\mathcal G}$ are subgroups of different continuous groups G - e.g. $\mathcal{A}_4 \subset SU(3)$ or $\mathcal{A}_4 \subset SO(3)$ - Is it possible to define discrete indices independently from the embedding? # Embedding \mathcal{A}_4 into SU(3) ## discrete indices of A_4 : | Irreps $\mathbf{r_i}$ | $\widetilde{\ell}(\mathbf{r_i})$ | $\widetilde{A}(\mathbf{r_i})$ | |-----------------------|----------------------------------|-------------------------------| | of \mathcal{A}_4 | $(N_{\ell} = 12)$ | $(N_A = 2)$ | | 1 | 0 | 0 | | 1 ' | 2 | 0 | | $\overline{f 1'}$ | 2 | 0 | | 3 | 1 | 1 | | ρ | $\sum_i \mathbf{r_i}$ | $\ell(oldsymbol{ ho})$ | $\sum_i \widetilde{\ell}(\mathbf{r_i})$ | $A(oldsymbol{ ho})$ | $\sum_i \widetilde{A}(\mathbf{r_i})$ | |----|-------------------------------------|------------------------|--|---------------------|--------------------------------------| | 3 | 3 | 1 | 1 | 1 | 1 | | 6 | $1+1'+\overline{1'}+3$ | 5 | 5 | 7 | 1 | | 8 | $1' + \overline{1'} + 2 \cdot 3$ | 6 | 6 | 0 | 2 | | 10 | $1 + 3 \cdot 3$ | 15 | 3 | 27 | 3 | | 15 | $oxed{1+1'+\overline{1'}+4\cdot 3}$ | 20 | 8 | 14 | 4 | # Embedding \mathcal{A}_4 into SO(3) discrete indices of A_4 : | Irreps $\mathbf{r_i}$ of \mathcal{A}_4 | $\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 12)$ | | |--|--|--| | 1 | 0 | | | 1' | 2 | | | $\overline{1'}$ | 2 | | | 3 | 1 | | | ρ | $\sum_i \mathbf{r_i}$ | $\ell(oldsymbol{ ho})$ | $\sum_i \widetilde{\ell}(\mathbf{r_i})$ | | |----|--------------------------------------|------------------------|--|--| | 3 | 3 | 1 | 1 | | | 5 | $1' + \overline{1'} + 3$ | 5 | 5 | | | 7 | $1 + 2 \cdot 3$ | 14 | 2 | | | 9 | $1 + 1' + \overline{1'} + 2 \cdot 3$ | 30 | 6 | | | 11 | $1' + \overline{1'} + 3 \cdot 3$ | 55 | 7 | |