Durham – March 19th, 2009

Christoph Luhn (University of Southampton)

in collaboration with Pierre Ramond (University of Florida)

Anomaly-free discrete family symmetries

- arXiv:0805.1736 [JHEP 07 (2008) 085]
- arXiv:0807.1749 [PLB 670 (2009) 390]

Outline

- motivation
- basic mathematical concepts
- gauge origin & anomalies
- embedding finite into continuous groups
- discrete indices
- discrete anomaly conditions

Fermionic mass structure

quarks

$$m_u: m_c: m_t \sim \lambda_c^8: \lambda_c^4: 1$$

$$m_d: m_s: m_b \sim \lambda_c^4: \lambda_c^2: 1$$

$$CKM \sim \begin{pmatrix} 1 & \lambda_c & \lambda_c^3 \\ \lambda_c & 1 & \lambda_c^2 \\ \lambda_c^3 & \lambda_c^2 & 1 \end{pmatrix}$$

 \Rightarrow quark masses and mixing are hierarchical

leptons

$$m_e: m_{\mu}: m_{\tau} \sim \lambda_c^{4 \text{ or } 5}: \lambda_c^2: 1$$

$$m_{\nu_1}: m_{\nu_2}: m_{\nu_3} \sim \begin{cases} \lambda_c^{\geq 1}: \lambda_c: 1 \\ 1: 1: \lambda_c^{\geq 1} \end{cases} \quad \text{MNSP} \sim \begin{pmatrix} 0.8 & 0.5 & < 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

$$1: 1: 1$$

 \Rightarrow neutrino sector is different

Tri-bimaximal mixing

MNSP
$$\approx U_{TB} \equiv \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\Rightarrow \begin{cases} \frac{\text{MNSP-angles tri-bimax.}}{\sin^2 \theta_{12}:} & 0.33 & 0.24 - 0.40 \\ \sin^2 \theta_{23}: & 0.50 & 0.34 - 0.68 \\ \sin^2 \theta_{13}: & 0 & \leq 0.041 \end{cases}$$

Effective neutrino mass matrix

• in basis where charged lepton mass matrix is diagonal

$$M_{\nu} \sim M_{\mathcal{TB}} = \begin{pmatrix} \alpha & \beta & \beta \\ \beta & \gamma & \alpha + \beta - \gamma \\ \beta & \alpha + \beta - \gamma & \gamma \end{pmatrix}$$

- How can we obtain such relations between entries of mass matrix?
 - \rightarrow unify families into multiplets of a symmetry group \mathcal{G} (assignment)
 - \rightarrow break \mathcal{G} spontaneously (vacuum alignment)
 - \rightarrow construct invariants of \mathcal{G} inserting vacuum structure

G = non-Abelian finite group

Abelian finite groups: \mathcal{Z}_N

•
$$\mathcal{Z}_N = \{1 , e^{2\pi i \frac{1}{N}} , e^{2\pi i \frac{2}{N}} , \dots, e^{2\pi i \frac{N-1}{N}} \}$$

- N elements
- one generator $a \in \mathcal{Z}_N$ (e.g. $a = e^{2\pi i/N}$)
- group operation = multiplication of complex numbers
- only one-dimensional irreps

Non-Abelian finite groups, e.g. S_3

group multiplication table:

	1	a_1	a_2	b_1	b_2	b_3
1	1	a_1	a_2	b_1	b_2	b_3
a_1	a_1	a_2	1	b_2 b_3 1 a_1 a_2	b_3	b_1
a_2	a_2	1	a_1	b_3	b_1	b_2
b_1	b_1	b_3	b_2	1	a_2	a_1
b_2	b_2	b_1	b_3	a_1	1	a_2
b_3	b_3	b_2	b_1	a_2	a_1	1

generators and the presentation:

choose generators $a \equiv a_1$ and $b \equiv b_1 \implies a_2 = a^2$, $b_2 = ab$, $b_3 = ba$ $\langle a, b \mid a^3 = b^2 = 1, bab^{-1} = a^{-1} \rangle$ defines the group uniquely

Irreducible representations

irreducible representations:

1:
$$a = 1$$
, $b = 1$
1': $a = 1$, $b = -1$
2: $a = \begin{pmatrix} e^{2\pi i/3} & 0 \\ 0 & e^{-2\pi i/3} \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

conjugacy classes:

$$1 C_1(1) = \{g \, 1 \, g^{-1} \, | \, g \in \mathcal{S}_3\} = \{1\}$$

$$2 C_2(a) = \{g \, a \, g^{-1} \, | \, g \in \mathcal{S}_3\} = \{a, a^2\}$$

$$3 C_3(b) = \{g \, b \, g^{-1} \, | \, g \in \mathcal{S}_3\} = \{b, ab, ba\}$$

number of classes = number of irreps number of elements = \sum (dimension of irrep)²

Kronecker products

general formula:

$$\mathbf{r} \otimes \mathbf{s} = d(\mathbf{r}, \mathbf{s}, \mathbf{t}) \mathbf{t}$$
, $d(\mathbf{r}, \mathbf{s}, \mathbf{t}) = \frac{1}{N} \sum_{i} n_{i} \chi_{i}^{[\mathbf{r}]} \chi_{i}^{[\mathbf{s}]} \bar{\chi}_{i}^{[\mathbf{t}]}$

- -N = number of group elements
- n_i = number of elements in conjugacy class C_i
- character χ = trace of the matrix representation of element g

Possible discrete family symmetries \mathcal{G}

- symmetry group: $SM \times \mathcal{G}$
- three families
- ullet Should have two- or three-dimensional irreps
- \bullet \mathcal{G} is a finite subgroup of either

$$\circ$$
 $SU(3)$ e.g. $\mathcal{PSL}_2(7)$, $\mathcal{Z}_7 \rtimes \mathcal{Z}_3$, $\Delta(3n^2)$, $\Delta(6n^2)$

$$\circ$$
 $SO(3)$ e.g. \mathcal{A}_4 , \mathcal{S}_4 , \mathcal{A}_5 , \mathcal{D}_n

$$\circ$$
 $SU(2)$ e.g. \mathcal{T}' , \mathcal{Q}_{2n}

example: \mathcal{A}_4 (irreps 1, 1', $\overline{\mathbf{1}}'$, 3)

$$L \sim 3$$
, $E^c \sim 1 + 1' + \overline{1'}$, $N^c \sim 3$

Gauging discrete symmetries

- discrete symmetries might be broken badly by quantum gravity effects
- as remnants of a gauge symmetry they are protected
 - → "discrete gauge symmetry"

 $G \supset \mathcal{G}$

gauge symmetry

discrete symmetry

ANOMALIES

Possible anomalies

$$SU(3)_C \times SU(2)_W \times U(1)_Y \times G$$

 $\bullet \quad G = U(1)$

$$SU(3)_C - SU(3)_C - U(1)$$
 $U(1)_Y - U(1)_Y - U(1)_Y$

$$SU(2)_W - SU(2)_W - U(1)$$
 $U(1)_Y - U(1) - U(1)$

Gravity – Gravity –
$$U(1)$$
 $U(1) - U(1) - U(1)$

- \longrightarrow constraints on possible $\mathcal{Z}_N \subset U(1)$ symmetries (Ibáñez & Ross)
- $\bullet \quad G = SU(3)$

$$SU(3) - SU(3) - SU(3) - SU(3) - SU(3) - U(1)_Y$$

→ What can we extract in this case?

Recap: G = U(1)

• formulate anomaly equations for G with U(1) charges z_i

structure:
$$\sum_{i} z_{i} = 0$$

• insert U(1) charges in terms of discrete charges q_i : $z_i = q_i \mod N$

$$\sum_{i} q_i = 0 \bmod N$$

• separate light and heavy fermions (\mathcal{Z}_N invariant mass term)

$$\sum_{i=\text{light}} q_i + \sum_{i=\text{heavy}} q_i = 0 \mod N$$

$$0 \mod N \text{ or } \frac{N}{2}$$

$$\Longrightarrow \sum_{i=\text{light}} q_i = 0 \mod N \text{ or } \frac{N}{2}$$

Cubic anomaly for G = SU(3)

• formulate cubic anomaly equation for G with SU(3) irreps ρ

$$\sum_{\rho} A(\rho) = 0 \qquad A(\rho) = \text{cubic Dynkin index}$$

• replace all SU(3) parameters: $\rho \to \sum_i \mathbf{r_i}$ and $A(\rho) = \sum_i \widetilde{A}(\mathbf{r_i}) \mod N_A$

$$\sum_{i} \widetilde{A}(\mathbf{r_i}) = 0 \mod N_A \qquad \widetilde{A}(\mathbf{r_i}) = \text{discrete cubic index}$$

• separate light and heavy fermions (\mathcal{G} invariant mass term)

$$\sum_{i=\text{light}} \widetilde{A}(\mathbf{r_i}) + \sum_{i=\text{heavy}} \widetilde{A}(\mathbf{r_i}) = 0 \mod N_A$$

$$\Longrightarrow \sum_{i=\text{light}} \widetilde{A}(\mathbf{r_i}) = 0 \mod N_A'$$

Mixed anomaly for G = SU(3)

• formulate mixed anomaly equation for G with SU(3) irreps ρ

$$\sum_{\boldsymbol{\rho}} \ell(\boldsymbol{\rho}) \cdot Y(\boldsymbol{\rho}) = 0 \qquad \qquad \ell(\boldsymbol{\rho}) = \text{quadratic Dynkin index}$$

- replace all SU(3) parameters: $\rho \to \sum_{i} \mathbf{r_i}$ and $\ell(\rho) = \sum_{i} \widetilde{\ell}(\mathbf{r_i}) \mod N_{\ell}$ $\sum_{i} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N_{\ell} \qquad \widetilde{\ell}(\mathbf{r_i}) = \text{discrete quadratic index}$
- separate light and heavy fermions (\mathcal{G} invariant mass term)

$$\sum_{i=\text{light}} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) + \sum_{i=\text{heavy}} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N_{\ell}$$

$$\Longrightarrow \sum_{i=\text{light}} \widetilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N'_{\ell}$$

In the following:
$$\mathcal{G} = \mathcal{Z}_7 \rtimes \mathcal{Z}_3$$
 (\mathcal{T}_7)

Embedding \mathcal{T}_7 into SU(3)

irreps of \mathcal{T}_7 :

 $\mathbf{3},\ \overline{\mathbf{3}},\ \mathbf{1},\ \mathbf{1}',\ \overline{\mathbf{1}'}$

some \mathcal{T}_7 Kronecker products:

$$\mathbf{3}\otimes\mathbf{3}=(\mathbf{3}+\overline{\mathbf{3}})_s+\overline{\mathbf{3}}_a$$

$$oldsymbol{3}\otimes \overline{oldsymbol{3}} = oldsymbol{1} + oldsymbol{1}' + \overline{oldsymbol{1}'} + oldsymbol{3} + \overline{oldsymbol{3}}$$

in SU(3):

$${f 3}\otimes {f 3}={f 6}_s+{f \overline 3}_a$$

$$3\otimes \overline{3}=1+8$$

$SU(3) \supset \mathcal{T}_7$

$$(10): \mathbf{3} = \mathbf{3}$$

$$(01): \ \overline{\mathbf{3}} = \ \overline{\mathbf{3}}$$

$$(20): \mathbf{6} = \mathbf{3} + \overline{\mathbf{3}}$$

$$(11): 8 = \mathbf{1}' + \overline{\mathbf{1}'} + \mathbf{3} + \overline{\mathbf{3}}$$

$$(30): \mathbf{10} = \mathbf{1} + \mathbf{3} + 2 \cdot \overline{\mathbf{3}}$$

$$(21): \mathbf{15} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 2 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$

$$(40): \mathbf{15'} = \mathbf{1} + \mathbf{1'} + \overline{\mathbf{1'}} + 2 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$

$$(05): \mathbf{21} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 3 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$

$$(13): \mathbf{24} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 3 \cdot \mathbf{3} + 4 \cdot \overline{\mathbf{3}}$$

$$(22): \mathbf{27} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + 4 \cdot (\mathbf{3} + \overline{\mathbf{3}})$$

Irreps ρ of SU(3) and their indices

cubic index:
$$\operatorname{Tr}\left(\left\{T_a^{[\boldsymbol{\rho}]}, T_b^{[\boldsymbol{\rho}]}\right\} T_c^{[\boldsymbol{\rho}]}\right) = A(\boldsymbol{\rho}) \frac{d_{abc}}{2}$$

quadratic index:
$$\operatorname{Tr}\left(\left\{T_a^{[\boldsymbol{\rho}]}, T_b^{[\boldsymbol{\rho}]}\right\}\right) = \ell(\boldsymbol{\rho}) \, \delta_{ab}$$

Irreps ρ of $SU(3)$	$A(oldsymbol{ ho})$	$\ell(oldsymbol{ ho})$
(10): 3	1	1
(20): 6	7	5
(11): 8	0	6
(30): 10	27	15
(21): 15	14	20

Irreps r_i of \mathcal{T}_7 and their indices

• $\mathbf{r_i}$ can originate from different irreps $\boldsymbol{\rho}$ of SU(3)

$$oldsymbol{
ho} \; \longrightarrow \; \sum_i \mathbf{r_i}$$

• define discrete indices $\widetilde{A}(\mathbf{r_i})$, $\widetilde{\ell}(\mathbf{r_i})$ and N_A , N_ℓ such that:

$$A(\boldsymbol{\rho}) = \sum_{i} \widetilde{A}(\mathbf{r_i}) \mod N_A$$

$$\ell(\boldsymbol{\rho}) = \sum_{i} \widetilde{\ell}(\mathbf{r_i}) \mod N_{\ell}$$

for all irreps ρ of SU(3)

Discrete indices of \mathcal{T}_7

definition:

Irreps $\mathbf{r_i}$ of \mathcal{T}_7	$\widetilde{A}(\mathbf{r_i})$ $(N_A = 7)$	$\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 3)$
1 '	x	y
$\overline{f 1'}$	-x	1-y
3	1	1
$\overline{3}$	-1	1

consistency:

ρ	$\sum_i \mathbf{r_i}$	$A(oldsymbol{ ho})$	$\sum_i \widetilde{A}(\mathbf{r_i})$	$\ell(oldsymbol{ ho})$	$\sum_i \widetilde{\ell}(\mathbf{r_i})$
3	3	1	1	1	1
6	$3+\overline{3}$	7	0	5	2
8	$1' + \overline{1'} + 3 + \overline{3}$	0	0	6	3
10	$1 + 3 + 2 \cdot \overline{3}$	27	-1	15	3
15	$1 + 1' + \overline{1'} + 2 \cdot (3 + \overline{3})$	14	0	20	5

Proving the assignment of discrete indices

- assign discrete indices to irreps $\mathbf{r_i}$ using the decomposition of the smallest irreps $\boldsymbol{\rho}$ of SU(3)
- ullet proof by induction that this assignment is consistent for all higher irreps $oldsymbol{
 ho}$
- make use of:

$$I(\boldsymbol{\rho} \otimes \boldsymbol{\sigma}) = d(\boldsymbol{\rho}) I(\boldsymbol{\sigma}) + I(\boldsymbol{\rho}) d(\boldsymbol{\sigma})$$

 $I = \text{Dynkin index } A \text{ or } \ell$

d = dimension of irrep

Discrete anomaly conditions

family symmetry SU(3) particles live in irreps ρ [normalization: $Y(\rho) \in \mathbb{Z}$]

$$\sum_{\boldsymbol{\rho}} A(\boldsymbol{\rho}) = 0 \qquad \sum_{\boldsymbol{\rho}} \ell(\boldsymbol{\rho}) \cdot Y(\boldsymbol{\rho}) = 0$$

family symmetry \mathcal{T}_7 particles live in irreps $\mathbf{r_i}$

- some acquire masses (heavy)
- some don't (light)

$$\sum_{i=\text{light}} \widetilde{A}_i + \sum_{i=\text{heavy}} \widetilde{A}_i = 0 \mod N_A$$

$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i + \sum_{i=\text{heavy}} \widetilde{\ell}_i Y_i = 0 \mod N_\ell$$

$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i + \sum_{i=\text{heavy}} \widetilde{\ell}_i Y_i = 0 \mod N_\ell$$

Effect of heavy fermions

- \mathcal{T}_7 invariant mass terms: $\mathbf{1}' \otimes \overline{\mathbf{1}'}$, $\mathbf{3} \otimes \overline{\mathbf{3}}$
- with $\mathcal{G} = \mathcal{T}_7$: only Dirac particles can be massive
- contribution of heavy fermions to discrete anomalies:

$$\mathbf{3} \otimes \overline{\mathbf{3}}: \qquad \sum_{i=1}^{2} \widetilde{A}_{i} = 0 \qquad \sum_{i=1}^{2} \widetilde{\ell}_{i} \cdot Y_{i} = 0$$

$$\mathbf{1}' \otimes \overline{\mathbf{1}'}: \sum_{i=1}^{2} \widetilde{A}_i = 0 \qquad \sum_{i=1}^{2} \widetilde{\ell}_i \cdot Y_i = (2y-1) \cdot Y(\mathbf{1}') \stackrel{!}{=} 0 \mod 3$$

 \longrightarrow no contribution if $y = \frac{1}{2}$ or 2 (and integer hypercharge normalization)

T₇ example: Luhn, Nasri, Ramond [PLB 652,27 (2007)]

- all hypercharges are integer
- hypercharge normalization $Y_Q = 1$

$$\sum_{i=\text{light}} \widetilde{A}_i = 0 \mod 7$$

$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i = 0 \mod 3$$

$$\sum_{i=\text{light}} \ell_i Y_i = 0 \mod 3$$

type of fermion	Q	U^c	D^c	L	E^c	N^c
\mathcal{T}_7 irrep	3	3	3	3	3	3
# of fermions	6	3	3	2	1	1
hypercharge Y	1	-4	2	-3	6	0

$$\widetilde{A}(\mathbf{3}) = 1$$

$$\widetilde{\ell}(\mathbf{3}) = 1$$

$$\sum_{i=\text{light}} \widetilde{A}_i = 6+3+3+2+1+1 = 16 \neq 0 \mod 7$$

$$\sum_{i=\text{light}} \widetilde{\ell}_i \cdot Y_i = 6 \cdot 1 + 3 \cdot (-4) + 3 \cdot 2 + 2 \cdot (-3) + 1 \cdot 6 + 1 \cdot 0 = 0$$

What does it mean?

discrete cubic anomaly is *not* satisfied

- light particle content of the model is *incomplete*
- \bullet some fermions which transform non-trivially under $\mathcal G$ have to be added
- ullet these fermions must be massless at energies above $E_{\mathcal{G}}$
- if $E_{\mathcal{C}} \sim \text{EWSB}$ scale \longrightarrow these fermions might show up in experiments

discrete mixed anomaly is not satisfied

- light particle content of the model is *incomplete* (as above) or
- some heavy fermions carry "fractional" hypercharge, i.e. $\frac{Y_{\text{heavy}}}{Y_Q} \notin \mathbb{Z}$ \longrightarrow electrically charged dark matter

Conclusion

- ullet neutrino mixing motivates non-Abelian discrete family symmetry ${\cal G}$
- many candidates for \mathcal{G} many more models
- require gauge origin of $\mathcal{G} \subset G = SU(3), SO(3), SU(2)$
- discuss remnants of the high-energy anomaly conditions
- introduce discrete indices (individually for each group \mathcal{G})
- discrete anomaly conditions
- some models might be incomplete in their light particle content

Different embeddings

- ullet some groups ${\mathcal G}$ are subgroups of different continuous groups G
- e.g. $\mathcal{A}_4 \subset SU(3)$ or $\mathcal{A}_4 \subset SO(3)$
- Is it possible to define discrete indices independently from the embedding?

Embedding \mathcal{A}_4 into SU(3)

discrete indices of A_4 :

Irreps $\mathbf{r_i}$	$\widetilde{\ell}(\mathbf{r_i})$	$\widetilde{A}(\mathbf{r_i})$
of \mathcal{A}_4	$(N_{\ell} = 12)$	$(N_A = 2)$
1	0	0
1 '	2	0
$\overline{f 1'}$	2	0
3	1	1

ρ	$\sum_i \mathbf{r_i}$	$\ell(oldsymbol{ ho})$	$\sum_i \widetilde{\ell}(\mathbf{r_i})$	$A(oldsymbol{ ho})$	$\sum_i \widetilde{A}(\mathbf{r_i})$
3	3	1	1	1	1
6	$1+1'+\overline{1'}+3$	5	5	7	1
8	$1' + \overline{1'} + 2 \cdot 3$	6	6	0	2
10	$1 + 3 \cdot 3$	15	3	27	3
15	$oxed{1+1'+\overline{1'}+4\cdot 3}$	20	8	14	4

Embedding \mathcal{A}_4 into SO(3)

discrete indices of A_4 :

Irreps $\mathbf{r_i}$ of \mathcal{A}_4	$\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 12)$	
1	0	
1'	2	
$\overline{1'}$	2	
3	1	

ρ	$\sum_i \mathbf{r_i}$	$\ell(oldsymbol{ ho})$	$\sum_i \widetilde{\ell}(\mathbf{r_i})$	
3	3	1	1	
5	$1' + \overline{1'} + 3$	5	5	
7	$1 + 2 \cdot 3$	14	2	
9	$1 + 1' + \overline{1'} + 2 \cdot 3$	30	6	
11	$1' + \overline{1'} + 3 \cdot 3$	55	7	