Durham — March 19th, 2009

Christoph Luhn (University of Southampton)

in collaboration with Pierre Ramond (University of Florida)

Anomaly-free

discrete family symmetries

- arXiv:0805.1736 [JHEP 07 (2008) 085]
- arXiv:0807.1749 [PLB 670 (2009) 390]



Outline '

e motivation

e basic mathematical concepts

e gauge origin & anomalies

e embedding finite into continuous groups
e discrete indices

e discrete anomaly conditions

Anomaly-free discrete family symmetries 1 of 25



Fermionic mass structure'
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= neutrino sector is different
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MNSP = UTB

Anomaly-free discrete family symmetries

Tri-bimaximal mixing I
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‘Effective neutrino mass matrix'

e in basis where charged lepton mass matrix is diagonal

o 5 B
M, ~ Mg = | 8 gl a+p—7
B a+f—vy Y

e How can we obtain such relations between entries of mass matrix?
— unify families into multiplets of a symmetry group G (assignment)
— break G spontaneously (vacuum alignment)

— construct invariants of G inserting vacuum structure

G = non-Abelian finite group
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‘Abelian finite groups: ZNI

-1 .9 CN—1
o Zy={1, M R L it
o N elements
e one generator a € Zy (e.g. a = e>™/N)

e group operation = multiplication of complex numbers

e only one-dimensional irreps
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‘Non-Abelian finite groups, e.g. 83I

group multiplication table:

generators and the presentation:

choose generators a =a; and b=b; = a9 =a?, by =ab, b3 = ba

<a,bla®>=0b*=1,bab~! = a! > defines the group uniquely
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Irreducible representations I

irreducible representations:

1: a=1, b=

1: a=1, = -1

0. (e%i/3 0 ) - (0 1)
0 e 2m/3 )7 1 0

conjugacy classes:

1Ci(1) = {glg7'[ge S} = {1}

2Cy(a) = {gag~'|ge S} = {a,a’}

3C3(b) = {gbg~'|ge Sz} = {b, ab, ba}

number of classes

number of elements

number of irreps

3" (dimension of irrep)?
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Kronecker products I

general formula:

ros = d(r,s,t)t d(r,s,t) = &Y. n, Xgr] ng] )‘(Et]

- N = number of group elements

- n; = number of elements in conjugacy class C}

- character Y = trace of the matrix representation of element g

)
83 101(1) 202 (a’) 303([)) 1/ ® 1/ — 1
X[l] 1 1 1
, 0 1'®2 = 2
X[ll 1 1 —1
2®2 = 1+1 + 2
y 2 2 —1 0 )
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Possible discrete family symmetries GI

e symmetry group: SM x G
e three families
e G should have two- or three-dimensional irreps

e ( is a finite subgroup of either
o SU(3) e.g PSLy(T), Z7 x Z3, A(3n?), A(6n?)
o SO(3) eg. Ay, S4, As, D,
o SU((2) eg. 7', Qap

example: A, (irreps 1,1/, 17, 3)

L~3, E‘~14+14+1, N°¢~3
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‘Gauging discrete Symmetriesl

e discrete symmetries might be broken badly by quantum gravity effects

e as remnants of a gauge symmetry they are protected

—  “discrete gauge symmetry”

gauge symmetry

ANOMALTIES
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G DG

discrete symmetry
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Possible anomalies I

SUB)e x SU2)w x U(l)y x G

e G = UN)
SU@B)c —SU@B)c —U(1) Ul)y —UQ)y —U(1)
SU(2)w —SU(2)w — U(1) U(l)y —U1) - U(1)
Gravity — Gravity — U(1) U(1) - U(1) — U(1)

— constraints on possible Zy C U(1) symmetries (Ibanez & Ross)

o G = SU(3)

SU(3) — SU(3) — SU(3) SU(3) — SU(3) — U(1)y

—— What can we extract in this case?
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Recap: G = U(l)'

e formulate anomaly equations for G with U(1) charges z;

structure : Zz@ = 0

)

e insert U(1) charges in terms of discrete charges ¢;:

Zq@- = 0 mod N

Zq

¢; mod N

e separate light and heavy fermions (Zy invariant mass term)

Z qi + Z ¢ = Omod N

1=light t=heavy

0 mod Nor%

N
— Z% = OmodNorE
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Cubic anomaly for G = SU(3) I

e formulate cubic anomaly equation for G with SU(3) irreps p

Z A(p) = 0 A(p) = cubic Dynkin index
p

~

e replace all SU(3) parameters: p — > . r; and | A(p) =), A(r;j) mod Ny

~

Z A(r;) = 0mod Ny A(r;) = discrete cubic index

e separate light and heavy fermions (G invariant mass term)

Z Av(ri) —|—Z A/(I'i) = 0 mod Ny

1=light t=heavy

— Z A(r]) = 0mod N,

Anomaly-free discrete family symmetries 13 of 25



Mixed anomaly for G = SU(3) I

e formulate mixed anomaly equation for G with SU(3) irreps p

Zﬁ(p) Y(p) = 0 ¢(p) = quadratic Dynkin index
P

~

e replace all SU(3) parameters: p — > . r; and | {(p) =) . £(r;) mod N,

~

ZZ(ri) Y (r;j) = 0mod N, /(r;) = discrete quadratic index

e separate light and heavy fermions (G invariant mass term)

> lri)-Y(r) ) lry)Y(r;) = 0mod N,
1=light t=heavy

- 7
~N~

0 mod le

— Y Ur)-Y(r;)) = 0mod N
1=light
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In the fOHOWngZ Q = Z7 X 23 (7})
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Embedding 77 into SU (3) I

irreps of 77: SUB) 2 Tr
3,3, 1,1, 1 (10): 3 = 3
(01): 3 = 3
some 77 Kronecker products: (20): 6 = 3+3
393=(3+3),+3, (11): 8 = V+1 +3+3
393 —14+1+T4+34+3 (30) : 10:1+3+2_.§ }
(21): 15 = 1+1'+17+2-(3+3)
in SU(3): (40): 15’ = 1+1"+1 +2-(3+3)
303 =6,+3, (05): 21 = 14+1+1'+3-(3+3)
395 —14+8 (13): 24 = 1+1+1+3-3+4-3
(22): 27 = 1+1'+1'+4-(3+3)
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‘Irreps p of SU(3) and their indices'

cubic index: Tr ({TCEP] : Tb[p]} Tc[p]) = A(p) Zabe

quadratic index: Tr ({TCEP] : Tb[p] }) = 4(p) Sup
Irreps p of SU(3) | A(p) | ¢(p)
(10): 3 1 1
(20): 6 7| 5
(11): 8 0 6
(30): 10 o7 | 15
(21): 15 14 | 20
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Irreps r; of 77 and their indices'

e r; can originate from different irreps p of SU(3)

P—>Zri
i

~ ~

e define discrete indices A(r;), ¢(r;) and N4, Ny such that:

A(p) = ZAV(I'I) mod Nz
l(p) = ZZ(I‘I) mod N

for all irreps p of SU(3)
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Discrete indices of ’Z}I

definition: | 1TTePS Ti A(rs) ((r;)
of 77 (Na = 7) (Ne = 3)

1’ x Y

1/ —T 1 —y

3 1 1

3 —1 1
consistency:
p > T Alp) | 3 Am) || €p) | 32, Urs)
3 3 1 1 1 1
6 3+3 7 0 5 2
8 1'+1+3+3 0 0 6 3
10 1+3+2-3 27 —1 15 3
15 | 1+1'+142-(3+43) 14 0 20 5
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Proving the assignment of discrete indices'

e assign discrete indices to irreps r; using the decomposition of the smallest
irreps p of SU(3)

e proof by induction that this assignment is consistent for all higher irreps p

e make use of:

= Dynkin index A or /¢

d = dimension of irrep
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Discrete anomaly conditions'

family symmetry SU (3) particles live in irreps p [normalization: Y (p) € Z|

1 >, Alp) =0 2_ptp)-Y(p) =0

family symmetry 75 particles live in irreps r;

. some acquire masses (heavy)
. some don’t (light)

~

Zz’zlight A; + Zi:heavy 2{@ = 0 mod Ny

~

Zz’:light Z@)/@ + Zz’:heavy gz)/z = 0 mod Ny
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Effect of heavy fermions'

e 7- invariant mass terms: 1'®1 , 3®3
e with G = 77: only Dirac particles can be massive

e contribution of heavy fermions to discrete anomalies:

~

.Mw
.Mw
S
I
-

323: A, =0 - Y;
1=1 1=1
2 2 '

'@l > A, =0 > 4:Y; = (2y—1)-Y(1) = 0mod 3
=1 1=1

1

— o contribution if y = 5 or 2 (and integer hypercharge normalization)
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"2'7 example: Luhn, Nasri, Ramond [pLB 652,27 (2007)]'

— all hypercharges are integer Zi:light A = Omod 7
— hypercharge normalization Yg =1 Zi:tht 7Y, = 0 mod 3
type of fermion | Q | U° | D¢ L | E¢ | N°
T+ irrep 3| 3| 3| 3| 3| 3 A(3) =1
# of fermions 6 3 3 2 1 1 2’(3) _1
hypercharge Y 1| —4 2 | —3 6 0
Y A = 6+3+3+2+1+1 =16 # Omod 7
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6-1+3-(—4)+3-24+2-(=3)+1-6+1-0 =

0

23 of 25



What does it mean?'

discrete cubic anomaly is not satisfied

e light particle content of the model is incomplete
e some fermions which transform non-trivially under G have to be added
e these fermions must be massless at energies above E g

o if £/ g~ EWSB scale —— these fermions might show up in experiments

discrete mixed anomaly is not satisfied

e light particle content of the model is incomplete (as above)
or

. . b Y eav
e some heavy fermions carry “fractional” hypercharge, i.e. % ¢ 7

—— electrically charged dark matter
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‘ Conclusion '

e neutrino mixing motivates non-Abelian discrete family symmetry G
e many candidates for G — many more models

e require gauge origin of G C G = SU(3),S50(3),SU(2)

e discuss remnants of the high-energy anomaly conditions

e introduce discrete indices (individually for each group G)

e discrete anomaly conditions

e some models might be incomplete in their light particle content
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Different embeddings I

e some groups G are subgroups of different continuous groups GG
ecg. Ay C SU3) or Ay C SO(3)

e s it possible to define discrete indices independently from the embedding?



‘Embedding A, into SU(3) I

discrete indices of Ay: Irreps r; £(r1) A(ri)
of Ay (N, = 12) | (Na = 2)
1 0 0
1’ 2 0
1/ 2 0
3 1 1
p >, i Up) | i Urs) || Alp) | X, Alrs)
3 3 1 1 1 1
6 1+1'+1'+3 5 5 7 1
8 1" +1"+2-3 6 6 0 2
10 1+3-3 15 3 27 3
15 | 1+1"+1/+4-3 | 20 8 14 4




Embedding A, into SO(B)I

discrete indices of Ajy: Irreps r; £(rs)
of Ay (N, = 12)
1 0
1’ 2
1/ 2
3 1
p > Ti Up) | 32, Urs)
3 3 1 1
5 1’+1'+3 5 5
7 1+2-3 14 2
9 |1+1+1+23 | 30 6
11 1'"+1+33 55 7




