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Plan of the talk

why study infrared singularties?
factorization of multi-leg amplitudes
partonic and eikonal jets

the soft anomalous dimension
s appetiser: surprise at two loops
» rescaling, cusp anomaly and factorization constraints

» sum-over-dipoles formula and possible corrections



Why study infrared singularties?

® Effective cancellation of infrared singularities: a major obstacle in
multi-loop cross—section calculations.

® |[nfrared singularities are the key to resummation
# parton showers

» dedicated precision calculations

® Theory: Infrared singularities open a window into the all-order
structure of perturbation theory and beyond

Major progress in understanding V' = 4 SYM amplitudes at large N_:

o AdS-CFT allows strong coupling calculations (e.g. of the cusp
anomalous dimension i)

» Integrability = Beisert-Eden-Staudacher equation for v
# BDS conjecture: iterative structure of amplitudes
o Amplitude — Wilson loop duality

But colour correlations only appear at finite V...



Why study infrared singularities?

Cross sections are finite only upon summing real and virtual contributions

p+k NP _I_ p
K

Dim. reg.: % [\(QQ/mﬁ)i —1 ] —  In(Q*/mi.,)

real virtual

® cross sections calculations:

o For general kinematics (and cuts!) phase—space integration
must be done numerically. = need to know the singularities
before we start the calculation.

# Itis possible: the singular terms are universal.

# At one loop we have general algorithms, allowing to determine
and subtract the singularities for general kinematics.
Example: dipole subtraction [Catani Seymour (1996)].

# Such are needed in multi-loop calculations.



Why study infrared singularities? (1) resummation

Cross sections are finite only upon summing real and virtual contributions

p+k NP _I_ p
K

Dim. reg.: %[(QQ/mﬁ)e —1 ] —  In(Q*/mi.,)

real virtual

® cross sections calculations.

® Resummation: The logarithms are often large, and they spoil the
convergence of the expansion in as: Zn’k Ch.pal In® (QQ/mj?et)
But, knowing the singularity structure, they can be resummed to all
orders — they exponentiate:

& parton showers

o dedicated precision calculations



Resummation: Example 1 — Higgs production at the LHC

The main Higgs production channel: g9 — H+X
gluon density — Higgs production occurs near partonic threshold:

® the total energy of gluons in the final state:
Ex =(8§—m%)/2my — 0

E—

R

® multiple soft gluon emission = resummation

Higgs Pr distribution [Bozzi et al. "05]
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Resummation: Example 2 — precision flavour physics

Inclusive decay spectra in the B factories: B — X,v, B — X,lv, ...
Resummation: Korchemsky Sterman; Bauer Fleming Pirjol Stewart
(SCET); Lange Neubert Paz; Andersen Gardi, Aglietti et al., ...

B — X,v spectrum [Andersen & Gardi '06]

— — — DGE NLO

| DGE NNLO
fixed—order results:

— — — NLO

--=-= NNLO + a,°B,°
------ NNLO + a’Bo®+ a,*Bo°

® B — X,v branching fraction — bounds on new physics

® precise determination of |V;| !



Resummation: Example 3 — jet cross sections

Jets in ete™ — hadrons — extensively studied at LEP
[Catani Trentadue Turnock Webber (92); Korchemsky Sterman (95);
Dokshitzer Webber (95), Dokshitzer Marchesini Webber (96), ...]

thrust distribution [Gardi & Rathsman '02]
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® Determination of the strong coupling

® Quantitative understanding hadronization corrections



Factorization In inclusive cross sections

Sudakov resummation in inclusive cross
sections is well understood

Soft and Jet sub-processes are
Incoherent — factorization

Each sub-process is associated with
# asingle scale

# aunigue anomalous dimension — a
function of the running coupling only:
Internal resummation

o the overlap: the cusp anomalous
dimension ~ g

1
Sud(m?, N) = exp CR/ %[(1—7“)]\7_1 —1 }R(mQ,fr) :
O 7

|\

TV .
real virtual
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Factorization in a two-jet process: amplitude level

® Consider the amplitude (virtual corrections only). The logarithms we
discussed before originate in infrared singularities of the amplitude:

# gluons that are collinear to the hard external partons
» soft gluons

® Need an infrared regulator (instead of the Mellin moment index V).
Dimensional regularization: d = 4 — 2¢

Sudakov form factor was extensively studied: Mueller (79), Collins (80),
Sen (81), Korchemsky (89), Sterman and Magnea (90),...



Factorization of a multi-leg amplitude

Fixed—angle scattering amplitude in a massless gauge theory (p? = 0)

Mueller (81) Jl
Sen (83)

Botts Sterman (89)

Kidonakis Oderda Sterman (98)

Catani (98) 7

Tejeda-Yeomans Sterman (02) H g

Kosower (03)
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Becher Neubert (09)

Gardi Magnea (09) o S5



Eikonal approximation

Eikonal Feynman rules p+k P
gluon emission in the limit £ — 0: k
_ . i(p + K+ m) . pH
~ig. T+ iy @
u(p)( Y K (p+ k)2 —m? +ie % wp)g p-k+ie
® Valid when all momentum components of k£ are small (not valid when
k is collinear to p but hard)
® Only the direction and the colour charge of the emitter are important.
Rescaling invariance: 8 « p
I B
e 7l
I ktie T Bkt
9o

Equivalent to radiation off a Wilson line along the quark trajectory:

P exp {igs /0 d\3 - A()\ﬂ)}



Colour flow

Decompose the amplitude in a colour basis (independent colour tensors
with the index structure of the external partons):

Example:
1(p2) — q p3 c1 = 5ik5jl C2 = 5z35kl
In general.

M{a pz/:uv ZML pz/,ua ) (CL){ozi}

nrep 1S the number of elements in the basis (number of irreducible
representations that can be constructed with the given external particles).



Gluon exchange mixes between the two states

/ J
Dress ¢; by a soft gluon:
K /
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Factorization of a multi-leg amplitude

® All singularities are in S, J;/7;.

® colour:
S Is a matrix acting on H

® Kkinematics:
S depends on all velocities;
J:/.J; depends on a single p;

To avoid double counting of the soft-collinear region: .7; removes from

its eikonal part, which is already taken into account in &.



The jet function: definition

® |Introduce auxiliary vectors n; (n? # 0) to separate collinear regions.
Intuitive picture: jet i contains gluons (k) such that: £ -p; <n; - p;

® Define a gauge—invariant jet using a Wilson line along a ray n;.

—_— _ (2p - n)? =
paronicjet:  a(p)J (2551 ¢) = (p[5(0) 8,0, ~00) 0
A2
where ®, (A2, A1) = Pexp ig/ d\n - A(An)
A1

eikonal jet: J (2(5%)2,6) = (0| ®3(00,0) ®,,(0, —00) |0)



Jet functions: evolution equations

>
paronicjer  atp) /(220 .. ¢) = (9170 2,(0.-0) o)
eikonal jet: J (2(@1.2”)2,0(5(/12),6) = (0| ®3(00,0) @, (0, —00) |0) .

These operators are multiplicatively renormalizable —- evolution equations:

d (2p-n)? 2 2
s (2R ) ) = = (a2

d 1 1 [ dN\?
U@ In J; (wiaOéS(:uQ)?E) = —VJ = §sz (wivaé’) _ _/O vfy;() (043()\2’6»

O(T/e)
w; = 2(8; - n;)? n? [EG & Magnea (09), based on Sen (81), Korchemsky (89)...]
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The eikonal jet and the cusp anomaly

® 7 doesn’t depend on any kinematic scale; radiative corrections —
only due to renormalization: In dimensional regularization (without
dimensionful cutoff): UV + IR = 0. p

°

for 3% # 0: finite anom. dim., rescaling invariance: (3 - n)?/(3°n?)

°

for 3% = 0: overlapping ultraviolet and collinear singularities =
o double poles

» single poles that carry (3 -n)?/n* dependence, violating classical
rescaling symmetry wrt 3. This is the cusp anomaly!

7 (2022 ) e { [ DL (a02.0) = 2 (02, 0) 1 (2202 }

The double poles as well as the entire kinematic dependence of the
simple poles are governed by 7(”' [EG & Magnea (09)]




The soft function S

Definition:

(en) it SV (Ba - B, as(p?), €) =
> (0] %5 (0,00) @ (00,0)8%7 (0, 00) @, (00,0) 0) (1) ;g
,i/j/k/l/

multiplicatively renormalizable —- matrix evolution equation:

d

g San (i Bisas(®). €) =

— > [Ts]yn (8- B ast®), €) Sni (B - By a(1?), )



The soft function S

Evolution = Exponentiation:

K N2
S(ﬁi'ﬁjags(:uQ)?E) :PeXp _%/0 VFS (6i'6j7a/8()\276)7€)

I's Is a matrix of anomalous dimensions.

#® A priori, I's can be very complicated: at each order in o,
It may contain new colour structures and kinematic
dependence corresponding to sums of webs:

# Infact I'° is (much?) simpler.



The soft anomalous dimension I's at two loops

Remarkable discovery: [Aybat Dixon Sterman (06)]
For any multi-leg amplitude:
K

(2) (1)
FS — ?I‘S

T 18 —C(Z)) Ca— %)TFNJ‘-

where T's = ZI‘?) (O@(M) and K = (%2
n=1
so at two loops: no new colour matrices, no new kinematic dependence...

» why?

®» where is K coming from?
This is the famous coefficient of the cusp anomalous dimension 7}?
[Korchemsky Radyushkin (87), Kodaira Trentadue (82),...] :

. 2
N =202 + KCi () 4+
7

s

very suggestive... does this extend to higher orders?



The soft anomalous dimension I's at two loops

One of the crucial elements in proving

K
ry =Ty

IS the vanishing of the diagram

N
OO I

We can prove it as follows [EG (09)]



I's at two loops: vanishing of Fj,

IR cutoff

F34(81, B2, 3) =/ dtﬂ%ﬁg/ dtﬂ%ﬁ;/ dtsigs3q O(tytats <T)
0 0 0

/ddZFWGDM(hﬂl — 2)Dyp(t2fB2 — 2)Dys (L3035 — 2)

® Antisymmetry of the three gluon vertex I'#¥? under any replacement
(Bose Symmetry) which ImplleS F3g (617 627 /63) — _F39(627 617 63)

® Rescaling invariance of the velocities (without affecting the IR cutoff),
® |If 3, and 3, are lightlike, then:

F3g(51,52,53) — f(ﬁl - B3, B2 - B3, 1 '52,53?) = f(/'iﬁl - B3, B2 '53/’43751 '5275:?)

= [ (B2 B3, 51 - B3, 51 - B2, 33)
— _f (ﬁl . 63752 : 637/61 ) 62753)



The soft function S

d
U@SJL (B: - Bj, as(u?),€) =

B Z [FS]JN (ﬂ@ ' ﬁﬁaS(IuQ)?e) SNL (ﬁz ‘ 5j7048(ﬂ2)76)

I's has cusp singularities, and therefore, similarly to v 7
® it has poles in ¢ (S itself has double poles).
® itis notinvariant with respect to 5, — k;0;

Both these issues can be ‘fixed’ by dividing by appropriate eikonal jets...



The reduced soft function S

- SJL (ﬂz ) 63'7 6)

Sir (pz’jae) — n

117 (2(@”'2%)276)

1=1 v

Having removed the collinear regions, S does not suffer from the cusp

anomaly, and must therefore respect rescaling 6, — x;0;:

(8i - B;)°

—> S depends onlyon  p;; = {

2(; - ni)2/n§} [2(@' ' ”j)Q/”ﬂ



Factorization in terms of the reduced soft function S

MN (pi/,LL,E) —

® S has only single poles due to large-angle soft gluons.

® S, like M, cannot depend on the normalization of the velocities!



Consequences of factorization + rescaling invariance of S

d_ - _
duSIK (pijr s (1) €) = = Y T (pijs as(1?)) Sk (pigs (1), €)

J

¥, —in contrast to I'?, and v, — is free of singularities.
Sik (57; ' 53‘7043( 2)76)

H7< LB m) , s(u2)76>

Sk (,Oz'ja Oés(,uQ), 6)

_ " 2(Bk - i )?
L7 (pij,as) = D27 (Bi - B, as,€) = 610 > v, ( B > 2 vO‘s>€>

n

= T3, (8- By (i’ €),€) =610 > [— 507, (as(p?,€))

k=1

1 2(8; - n;)? 1 (" de?
+ o7 (@i e) 1n( A ) + 1/ 5%7%)@3@2’6))]




Consequences of factorization + rescaling invariance of S

_ n 1
P77 (pijsas) = T3, (Bi - By (i’ €),€) — 610> [— 507 (as(p?,€))
k=

e () L[ )

Ny

® off diagonal terms in I'® are finite and must depend only on
conformal cross ratios

Diikl = (Bi - B5)(Bk - B1) _ (pz’j sz)l/z
] (Bz : Bk)(ﬁj ' ﬁl) Pik Pii

® diagonal terms in I'° have the following singularity

F?J(ﬁi'ﬁjaas( , € 7 —5IJZ / & WK a85,6)>+0(60)

and must also contain finite terms with specific dependence on
B; - 3; so as to combine with the (3; - n;)?/n? to generate p;;.



Consequences of factorization + rescaling invariance of S

_ n 1
L7 (pigs ) = Ty (Bi - By as(u?,€)€) = 01y Y [— 507 (as(p?,€))
k=1

1 2(Bk - ni,)? 1 [* de?
+ 75 (s, o) 1n( ) ) t 1/0 giz'&) (0‘8(52’6)”

Ny

Taking a derivative with respect to (3; - n;)*/n? we get:

— 1 ; .
T3 (pig o) = 37 () O, Vi, 1,.J

(Bi - B;)?
4 [(Bi-nq)?/nf] [(85 - ny)?/n?]

On the |.h.s. we used the definition p;; =

. . 0 0
with the chain rule: TG, nz-)Q/n,?F (pij) = — Z —F (pij)



The equations for I'®

Factorization + rescaling invariance imply:
'S for any multi-leg amplitude, in any colour basis, obeys:

1 .
; @ln pl] (/Oij,CYS) — nyK (&8) ) Vi

[Gardi Magnea (09)]

This is true to all orders, as well as at strong coupling.

® We have related the soft anomalous dimension of a general multi-leg
amplitude to the cusp anomalous dimension.

® Intriguing relation between kinematics and colour.



Solving for I'S

L ,
)3 T (pyjy ) = 77 () i

Does this set of differential equations have a unique solution?

® For two or three legs - yes! Then I'S can be written in terms of v,
with explicitly determined kinematic dependence.

® For four or more legs - no: functions of conformal cross ratios

iy = B Bi) (B B) (pz-jpm)m
Y (Bi - Be)(Bj - Bi) Pik Pl

satisfy the homogeneous equation.
Yet, it has a simple all-order solution (minimal solution)



The sum-over-dipoles formula

ny admits quadratic Casimir scaling (C; = T, - 'T;) (at least to 3 loops):

g s\ 2 g\ 3 i
f}é{) - QCi——I-KCZ' (—> ‘|‘K(2)Ci (_> +-e = z’YK (043) + 7 ) ( s)
/I ™ s R,—/
Higher Casimirs

. 1 R ,
The equations: Z 8ln O c (pij,as) = 1 T, - T; Yk (as) , W)
%J

are solved by the sum-over-dipoles formula [Gardi Magnea (09)]:
_ 1 R
[ (pij ) = — g x (as) > In(pi) Ti- T + = 5_ (s ZT T,
]
® Generalises the two loop result to all orders (minimal solution!)

® Kinematics and colour are directly correlated.

The same formula was simultaneously proposed by Becher and Neubert.



The sum-over-dipoles formula: a solution to the constraints

_ 1 ) )

ansatz
1%#] a

+ % 05(as) > TIT

1=1 a

(1)

Proof: take a derivative of (1) with respect to p;; (for fixed i and j),

T (pij, as) 1 (a) (@)
— _Z . Tl Tl
(91n(,0w) 4 TK (CM ) za: 7 J

then sum over 5 (all external partons, excluding 7) to get:
8F§ Pijs s 1 ~ a a
> Tt - s ¥ Ty
J 37 Y j,i#i a
_ L () (_rp(a)
— _ZYK (as) ;Ti (_Tz' )

where colour conservation was used >, T,E“) = 0.




Beyond the minimal solution

Corrections to the sum-over-dipoles formula are of two kinds

® terms that are induced by higher Casimir contributions to vx — they
may appear starting at four loops and must satisfy the equations

1 ) .
; 8ln ) c. (pij, as) = 7 Vi (as) Vi,

® solutions of the homogeneous equations

17y s =0 Vi
Z@lnpw IOJO‘) l

namely, functions of conformal cross ratios. These may appear
starting at three loops, four legs.

Absence of H(Q) Z Z i fabe TSTLTE I (pijir) In (pires) In (pasn)
7,k,l a,b,c

at the two-loops s supports the minimal solution!



Conclusions

® Detailed understanding of infrared singularities in QCD amplitudes is
needed for cross section calculations and for resummation.

® Recent progress:
» Remarkable simplicity at two loops — now better understood.

# A completely general constraint was derived based on

factorization and rescaling symmetry.
It relates soft singularities in any amplitude, and any loop order,

to the cusp anomalous dimension.
o An all-loop sum-over-dipoles formula naturally emerges as a
minimal solution.

® Several research avenues have opened up. The full beauty of gauge
theory amplitudes is not yet revealed...
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