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Plan of the talk

why study infrared singularties?

factorization of multi-leg amplitudes

partonic and eikonal jets

the soft anomalous dimension

appetiser: surprise at two loops

rescaling, cusp anomaly and factorization constraints

sum-over-dipoles formula and possible corrections
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Why study infrared singularties?

Effective cancellation of infrared singularities: a major obstacle in
multi-loop cross–section calculations.

Infrared singularities are the key to resummation

parton showers

dedicated precision calculations

Theory: Infrared singularities open a window into the all-order
structure of perturbation theory and beyond
Major progress in understanding N = 4 SYM amplitudes at large Nc:

AdS-CFT allows strong coupling calculations (e.g. of the cusp
anomalous dimension γK)

Integrability =⇒ Beisert-Eden-Staudacher equation for γK

BDS conjecture: iterative structure of amplitudes

Amplitude – Wilson loop duality

But colour correlations only appear at finite Nc.
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Why study infrared singularities?

Cross sections are finite only upon summing real and virtual contributions

+

Dim. reg.:
1

ǫ

[ (
Q2/m2

j

)ǫ

︸ ︷︷ ︸
real

− 1︸ ︷︷ ︸
virtual

]
=⇒ ln(Q2/m2

jet)

cross sections calculations:

For general kinematics (and cuts!) phase–space integration
must be done numerically. =⇒ need to know the singularities
before we start the calculation.

It is possible: the singular terms are universal.

At one loop we have general algorithms, allowing to determine
and subtract the singularities for general kinematics.
Example: dipole subtraction [Catani Seymour (1996)].

Such are needed in multi-loop calculations. – p. 4



Why study infrared singularities? (II) resummation

Cross sections are finite only upon summing real and virtual contributions

+

Dim. reg.:
1

ǫ

[ (
Q2/m2

j

)ǫ

︸ ︷︷ ︸
real

− 1︸ ︷︷ ︸
virtual

]
=⇒ ln(Q2/m2

jet)

cross sections calculations.

Resummation: The logarithms are often large, and they spoil the
convergence of the expansion in αs:

∑
n,k Cn,kα

n
s lnk

(
Q2/m2

jet

)

But, knowing the singularity structure, they can be resummed to all
orders — they exponentiate:

parton showers

dedicated precision calculations
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Resummation: Example 1 — Higgs production at the LHC

The main Higgs production channel: gg −→ H+X

gluon density =⇒ Higgs production occurs near partonic threshold:

the total energy of gluons in the final state:
EX = (ŝ−m2

H)/2mH → 0

multiple soft gluon emission =⇒ resummation

Higgs PT distribution [Bozzi et al. ’05]

x2 2P

1x P1

P2

1P

t

gluons

Higgs

soft
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Resummation: Example 2 — precision flavour physics

Inclusive decay spectra in the B factories: B̄ → Xsγ, B̄ → Xulν, . . .
Resummation: Korchemsky Sterman; Bauer Fleming Pirjol Stewart
(SCET); Lange Neubert Paz; Andersen Gardi, Aglietti et al., ...

B̄ → Xsγ spectrum [Andersen & Gardi ’06]

B̄ → Xsγ branching fraction — bounds on new physics

precise determination of |Vub| !
– p. 7



Resummation: Example 3 — jet cross sections

Jets in e+e− → hadrons — extensively studied at LEP
[Catani Trentadue Turnock Webber (92); Korchemsky Sterman (95);
Dokshitzer Webber (95), Dokshitzer Marchesini Webber (96), ...]

thrust distribution [Gardi & Rathsman ’02]

Determination of the strong coupling

Quantitative understanding hadronization corrections
– p. 8



Factorization in inclusive cross sections

Sudakov resummation in inclusive cross
sections is well understood

Soft and Jet sub-processes are
incoherent =⇒ factorization

Each sub-process is associated with

a single scale

a unique anomalous dimension — a
function of the running coupling only:
internal resummation

the overlap: the cusp anomalous
dimension γK

Sud(m2, N) = exp



CR

∫ 1

0

dr

r

[
(1 − r)N−1

︸ ︷︷ ︸
real

−1︸︷︷︸
virtual

]
R(m2, r)



 ,

CR
R(m2, r)

r
= −

1

r

[∫ rm2

r2m2

dk2

k2
γK

(
αs(k

2)
)

+ 2B
(
αs(rm

2)
)
− 2D

(
αs(r

2m2)
)
]
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Factorization in a two-jet process: amplitude level

Consider the amplitude (virtual corrections only). The logarithms we
discussed before originate in infrared singularities of the amplitude:

gluons that are collinear to the hard external partons

soft gluons

Need an infrared regulator (instead of the Mellin moment index N ).
Dimensional regularization: d = 4 − 2ǫ

Sudakov form factor was extensively studied: Mueller (79), Collins (80),
Sen (81), Korchemsky (89), Sterman and Magnea (90),... – p. 10



Factorization of a multi-leg amplitude

Fixed–angle scattering amplitude in a massless gauge theory (p2
i = 0)

Mueller (81)
Sen (83)
Botts Sterman (89)
Kidonakis Oderda Sterman (98)
Catani (98)
Tejeda-Yeomans Sterman (02)
Kosower (03)
Aybat Dixon Sterman (06)
Becher Neubert (09)
Gardi Magnea (09)

– p. 11



Eikonal approximation

Eikonal Feynman rules

gluon emission in the limit k → 0:

ū(p)
(
−igsT

(a)γµ
) i(p/+ k/+m)

(p+ k)2 −m2 + iε
−→ ū(p)gsT

(a) pµ

p · k + iε

Valid when all momentum components of k are small (not valid when
k is collinear to p but hard)

Only the direction and the colour charge of the emitter are important.
Rescaling invariance: β ∝ p

gsT
(a) pµ

p · k + iε
= gsT

(a) βµ

β · k + iε

Equivalent to radiation off a Wilson line along the quark trajectory:

P exp

{
igs

∫ ∞

0

dλβ ·A(λβ)

}

– p. 12



Colour flow

Decompose the amplitude in a colour basis (independent colour tensors
with the index structure of the external partons):
Example:

q(p1)q̄(p2) → q(p3)q̄(p4)

= M1

c1 = δikδjl

+M2

c2 = δijδkl

In general:

M{αi} (pi/µ, ǫ) =

nrep∑

L=1

ML (pi/µ, ǫ) (cL){αi}

nrep is the number of elements in the basis (number of irreducible
representations that can be constructed with the given external particles).

– p. 13



Gluon exchange mixes between the two states

Dress c1 by a soft gluon:

taii′t
a
j′j

δi′kδlj′︷︸︸︷
c1 = taikt

a
lj =

1

2
δijδkl −

1

2Nc

δikδjl

=
1

2
c2 −

1

2Nc

c1

Fierz Identity:
∑

a

tar2r1
tar3r4

=
1

2
δr1r3

δr2r4
−

1

2Nc
δr2r1

δr3r4

– p. 14



Factorization of a multi-leg amplitude

All singularities are in S, J i/J i.

colour:
S is a matrix acting on H

kinematics:
S depends on all velocities;
J i/J i depends on a single pi

MN (pi/µ, ǫ) =
∑

L

SNL (βi · βj, ǫ) HL

(
2pi · pj

µ2
,
(2pi · ni)

2

n2
i µ

2

)

×
n∏

i=1

J i

(
(2pi · ni)

2

n2
i µ

2
, ǫ

)/
J i

(
2(βi · ni)

2

n2
i

, ǫ

)

To avoid double counting of the soft-collinear region: Ji removes from Ji

its eikonal part, which is already taken into account in S. – p. 15



The jet function: definition

Introduce auxiliary vectors ni (n2
i 6= 0) to separate collinear regions.

Intuitive picture: jet i contains gluons (k) such that: k · pi < ni · pi

Define a gauge–invariant jet using a Wilson line along a ray ni.

partonic jet: u(p) J

(
(2p · n)2

n2µ2
, ǫ

)
= 〈p |ψ(0) Φn(0,−∞) |0〉

where Φn(λ2, λ1) = P exp

[
ig

∫ λ2

λ1

dλn ·A(λn)

]

eikonal jet: J

(
2(β · n)2

n2
, ǫ

)
= 〈0|Φβ(∞, 0) Φn(0,−∞) |0〉 – p. 16



Jet functions: evolution equations

partonic jet: u(p) J

(
(2p · n)2

n2µ2
, αs(µ

2), ǫ

)
= 〈p |ψ(0) Φn(0,−∞) |0〉

eikonal jet: J

(
2(β · n)2

n2
, αs(µ

2), ǫ

)
= 〈0|Φβ(∞, 0) Φn(0,−∞) |0〉 .

These operators are multiplicatively renormalizable =⇒ evolution equations:

µ
d

dµ
lnJ i

(
(2p · n)2

n2µ2
, αs(µ

2), ǫ

)
= − γJi

(αs(µ
2))

µ
d

dµ
lnJi

(
wi, αs(µ

2), ǫ
)
≡ −γJi

=
1

2
GJi

(wi, αs) −
1

4

∫ µ2

0

dλ2

λ2
γ

(i)
K

(
αs(λ

2, ǫ)
)

︸ ︷︷ ︸
O(1/ǫ)

wi ≡ 2(βi · ni)
2/n2

i [EG & Magnea (09), based on Sen (81), Korchemsky (89)...]
– p. 17



The eikonal jet and the cusp anomaly

J doesn’t depend on any kinematic scale; radiative corrections —
only due to renormalization: In dimensional regularization (without
dimensionful cutoff): UV + IR = 0.

for β2 6= 0: finite anom. dim., rescaling invariance: (β · n)2/(β2n2)

for β2 = 0: overlapping ultraviolet and collinear singularities =⇒

double poles

single poles that carry (β · n)2/n2 dependence, violating classical
rescaling symmetry wrt β. This is the cusp anomaly!

Ji

„

2(β · n)2

n2
, ǫ

«

=exp

(

Z µ2

0

dλ2

λ2

»

1

4
δJi

“

αs(λ
2, ǫ)

”

−
1

8
γ
(i)
K

“

αs(λ
2, ǫ)

”

ln

„

2(β · n)2µ2

n2λ2

« –

)

The double poles as well as the entire kinematic dependence of the
simple poles are governed by γ(i)

K ! [EG & Magnea (09)] – p. 18



The soft function S

Definition:

(cN)ijkl SNL

(
βa · βb, αs(µ

2), ǫ
)

=
∑

i′j′k′l′

〈0|Φk,k′

−β2
(0,∞) Φi,i′

β1
(∞, 0)Φj,j′

β3
(0,∞)Φl,l′

−β4
(∞, 0) |0〉 (cL)i′j′k′l′

multiplicatively renormalizable =⇒ matrix evolution equation:

µ
d

dµ
SJL

(
βi · βj, αs(µ

2), ǫ
)

=

−
∑

N

[ΓS ]JN

(
βi · βj, αs(µ

2), ǫ
)
SNL

(
βi · βj, αs(µ

2), ǫ
)

– p. 19



The soft function S

Evolution =⇒ Exponentiation:

S
(
βi · βj, αs(µ

2), ǫ
)

= P exp

{
−

1

2

∫ µ2

0

dλ2

λ2
ΓS

(
βi · βj, αs(λ

2, ǫ), ǫ
)
}

ΓS is a matrix of anomalous dimensions.

A priori, ΓS can be very complicated: at each order in αs

it may contain new colour structures and kinematic
dependence corresponding to sums of webs:

In fact Γ
S is (much?) simpler. – p. 20



The soft anomalous dimension ΓS at two loops

Remarkable discovery: [Aybat Dixon Sterman (06)]
For any multi-leg amplitude:

Γ
(2)
S =

K

2
Γ

(1)
S

where ΓS =

∞∑

n=1

Γ
(n)
S

(
αs(µ)

π

)n

and K =
(

67
18 − ζ(2)

)
CA − 10

9 TFNf .

so at two loops: no new colour matrices, no new kinematic dependence...

why?

where is K coming from?
This is the famous coefficient of the cusp anomalous dimension γ(i)

K

[Korchemsky Radyushkin (87), Kodaira Trentadue (82),...] :

γ
(i)
K = 2Ci

αs

π
+KCi

(αs

π

)2

+ · · ·

very suggestive... does this extend to higher orders?
– p. 21



The soft anomalous dimension ΓS at two loops

One of the crucial elements in proving

Γ
(2)
S =

K

2
Γ

(1)
S

is the vanishing of the diagram

We can prove it as follows [EG (09)]

– p. 22



ΓS at two loops: vanishing of F3g

F3g(β1, β2, β3) =

∫ ∞

0

dt1igsβ
µ̂
1

∫ ∞

0

dt2igsβ
ν̂
2

∫ ∞

0

dt3igsβ
σ̂
3

IR cutoff︷ ︸︸ ︷
θ(t1 t2 t3 < T )

∫
ddzΓµνσDµµ̂(t1β1 − z)Dνν̂(t2β2 − z)Dσσ̂(t3β3 − z)

Antisymmetry of the three gluon vertex Γµνσ under any replacement
(Bose symmetry) which implies F3g(β1, β2, β3) = −F3g(β2, β1, β3)

Rescaling invariance of the velocities (without affecting the IR cutoff),

If β1 and β2 are lightlike, then:

F3g(β1, β2, β3) = f(β1 · β3, β2 · β3, β1 · β2, β
2
3) = f(κβ1 · β3, β2 · β3/κ, β1 · β2, β

2
3)

= f
(
β2 · β3, β1 · β3, β1 · β2, β

2
3

)

= −f
(
β1 · β3, β2 · β3, β1 · β2, β

2
3

)
– p. 23



The soft function S

µ
d

dµ
SJL

(
βi · βj , αs(µ

2), ǫ
)

=

−
∑

N

[ΓS ]JN

(
βi · βj , αs(µ

2), ǫ
)
SNL

(
βi · βj , αs(µ

2), ǫ
)

ΓS has cusp singularities, and therefore, similarly to γJ

it has poles in ǫ (S itself has double poles).

it is not invariant with respect to βi −→ κiβi

Both these issues can be ‘fixed’ by dividing by appropriate eikonal jets...
– p. 24



The reduced soft function S

S ≡

SJL (ρij, ǫ) =
SJL (βi · βj, ǫ)

n∏

i=1

Ji

(
2(βi · ni)

2

n2
i

, ǫ

)

Having removed the collinear regions, S does not suffer from the cusp

anomaly, and must therefore respect rescaling βi −→ κiβi:

=⇒ S depends only on ρij ≡
(βi · βj)

2

[
2(βi · ni)2/n2

i

] [
2(βj · nj)2/n2

j

]
– p. 25



Factorization in terms of the reduced soft function S

MN (pi/µ, ǫ) = =

=
∑

L

SNL (βi · βj , ǫ)HL

n∏

i=1

J i

(
(2pi · ni)

2

n2
iµ

2
, ǫ

)

Ji

(
2(βi · ni)

2

n2
i

, ǫ

)

=
∑

L

SNL (ρij , ǫ)HL

n∏

i=1

J i

(
(2pi · ni)

2

n2
iµ

2
, ǫ

)

S has only single poles due to large-angle soft gluons.

S, like M, cannot depend on the normalization of the velocities!
– p. 26



Consequences of factorization + rescaling invariance of S

µ
d

dµ
SIK

(
ρij , αs(µ

2), ǫ
)

= −
∑

J

ΓS
IJ

(
ρij , αs(µ

2)
)
SJK

(
ρij , αs(µ

2), ǫ
)

ΓS
IJ — in contrast to ΓS

IJ and γJ — is free of singularities.

SIK

(
ρij , αs(µ

2), ǫ
)
≡

SIK

(
βi · βj , αs(µ

2), ǫ
)

n∏

i=1

Ji

(
2(βi · ni)

2

n2
i

, αs(µ
2), ǫ

)

ΓS
IJ (ρij , αs) = ΓS

IJ (βi · βj , αs, ǫ) − δIJ

n∑

k=1

γJk

(
2(βk · nk)2

n2
k

, αs, ǫ

)

= ΓS
IJ

(
βi · βj , αs(µ

2, ǫ), ǫ
)
− δIJ

n∑

k=1

[
−

1

2
δJk

(
αs(µ

2, ǫ)
)

+
1

4
γ

(k)
K

(
αs(µ

2, ǫ)
)

ln

(
2(βi · ni)

2

n2
i

)
+

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αs(ξ

2, ǫ)
)]

– p. 27



Consequences of factorization + rescaling invariance of S

ΓS
IJ (ρij , αs) = ΓS

IJ

(
βi · βj , αs(µ

2, ǫ), ǫ
)
− δIJ

n∑

k=1

[
−

1

2
δJk

(
αs(µ

2, ǫ)
)

+
1

4
γ

(k)
K

(
αs(µ

2, ǫ)
)

ln

(
2(βk · nk)2

n2
k

)
+

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αs(ξ

2, ǫ)
)]

off diagonal terms in ΓS are finite and must depend only on
conformal cross ratios

ρijkl ≡
(βi · βj)(βk · βl)

(βi · βk)(βj · βl)
=

(
ρij ρkl

ρik ρjl

)1/2

diagonal terms in ΓS have the following singularity

ΓS
IJ

(
βi · βj , αs(µ

2, ǫ), ǫ
)

= δIJ

n∑

k=1

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αs(ξ

2, ǫ)
)

+ O(ǫ0)

and must also contain finite terms with specific dependence on
βi · βj so as to combine with the (βi · ni)

2/n2
i to generate ρij . – p. 28



Consequences of factorization + rescaling invariance of S

ΓS
IJ (ρij , αs) = ΓS

IJ

(
βi · βj , αs(µ

2, ǫ), ǫ
)
− δIJ

n∑

k=1

[
−

1

2
δJk

(
αs(µ

2, ǫ)
)

+
1

4
γ

(k)
K

(
αs(µ

2, ǫ)
)

ln

(
2(βk · nk)2

n2
k

)
+

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αs(ξ

2, ǫ)
)]

Taking a derivative with respect to (βi · ni)
2/n2

i we get:

∑

j 6=i

∂

∂ ln(ρij)
ΓS

IJ (ρij, αs) =
1

4
γ

(i)
K (αs) δIJ , ∀i, I, J

On the l.h.s. we used the definition ρij ≡
(βi · βj )2

4 [(βi · ni)2/n2
i ]

[
(βj · nj)2/n2

j

]

with the chain rule:
∂

∂ ln(βi · ni)2/n2
i

F (ρij) = −
∑

j 6=i

∂

∂ ln ρij
F (ρij)

– p. 29



The equations for ΓS

Factorization + rescaling invariance imply:
ΓS for any multi-leg amplitude, in any colour basis, obeys:

∑

j 6=i

∂

∂ ln(ρij)
Γ

S (ρij, αs) =
1

4
γ

(i)
K (αs) , ∀i

[Gardi Magnea (09)]

This is true to all orders, as well as at strong coupling.

We have related the soft anomalous dimension of a general multi-leg
amplitude to the cusp anomalous dimension.

Intriguing relation between kinematics and colour.

– p. 30



Solving for ΓS

∑

j 6=i

∂

∂ ln(ρij)
Γ

S (ρij, αs) =
1

4
γ

(i)
K (αs) , ∀i

Does this set of differential equations have a unique solution?

For two or three legs - yes! Then ΓS can be written in terms of γK ,
with explicitly determined kinematic dependence.

For four or more legs - no: functions of conformal cross ratios

ρijkl ≡
(βi · βj)(βk · βl)

(βi · βk)(βj · βl)
=

(
ρij ρkl

ρik ρjl

)1/2

satisfy the homogeneous equation.
Yet, it has a simple all-order solution (minimal solution)

– p. 31



The sum-over-dipoles formula

γ
(i)
K admits quadratic Casimir scaling (Ci ≡ Ti · Ti) (at least to 3 loops):

γ
(i)
K = 2Ci

αs

π
+KCi

(αs

π

)2

+K(2)Ci

(αs

π

)3

+· · · = Ci γ̂K (αs) + γ̃
(i)
K (αs)︸ ︷︷ ︸

Higher Casimirs

The equations:
∑

j 6=i

∂

∂ ln(ρij)
ΓS

Q.C. (ρij , αs) =
1

4
Ti · Ti γ̂K (αs) , ∀i

are solved by the sum-over-dipoles formula [Gardi Magnea (09)]:

ΓS
Q.C. (ρij, αs) = −

1

8
γ̂K (αs)

∑

i6=j

ln(ρij) Ti · Tj +
1

2
δ̂S(αs)

n∑

i=1

Ti · Ti ,

Generalises the two loop result to all orders (minimal solution!)

Kinematics and colour are directly correlated.

The same formula was simultaneously proposed by Becher and Neubert. – p. 32



The sum-over-dipoles formula: a solution to the constraints

ΓS
Q.C. (ρij , αs)

∣∣∣
ansatz

= −
1

8
γ̂K (αs)

∑

i 6=j

ln(ρij)
∑

a

T
(a)
i T

(a)
j

+
1

2
δ̂S(αs)

n∑

i=1

∑

a

T
(a)
i T

(a)
i ,

(1)

Proof: take a derivative of (1) with respect to ρij (for fixed i and j),

∂ΓS (ρij , αs)

∂ ln(ρij)
= −

1

4
γ̂K (αs)

∑

a

T
(a)
i T

(a)
j

then sum over j (all external partons, excluding i) to get:

∑

j, j 6=i

∂ΓS (ρij , αs)

∂ ln(ρij)
= −

1

4
γ̂K (αs)

∑

j, j 6=i

∑

a

T
(a)
i T

(a)
j

= −
1

4
γ̂K (αs)

∑

a

T
(a)
i

(
−T

(a)
i

)

where colour conservation was used
∑n

i=1 T
(a)
i = 0.

– p. 33



Beyond the minimal solution

Corrections to the sum-over-dipoles formula are of two kinds

terms that are induced by higher Casimir contributions to γK — they
may appear starting at four loops and must satisfy the equations

∑

j 6=i

∂

∂ ln(ρij)
ΓS

H.C. (ρij , αs) =
1

4
γ̃

(i)
K (αs) , ∀i,

solutions of the homogeneous equations

∑

j 6=i

∂

∂ ln(ρij)
ΓS (ρij , αs) = 0 ∀i

namely, functions of conformal cross ratios. These may appear
starting at three loops, four legs.

Absence of Ĥ
(2)
[f] =

∑

j,k,l

∑

a,b,c

i fabc Ta
j Tb

kTc
l ln (ρijkl) ln (ρiklj) ln (ρiljk)

at the two-loops ΓS supports the minimal solution!
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Conclusions

Detailed understanding of infrared singularities in QCD amplitudes is
needed for cross section calculations and for resummation.

Recent progress:

Remarkable simplicity at two loops — now better understood.

A completely general constraint was derived based on
factorization and rescaling symmetry.
It relates soft singularities in any amplitude, and any loop order,
to the cusp anomalous dimension.

An all-loop sum-over-dipoles formula naturally emerges as a
minimal solution.

Several research avenues have opened up. The full beauty of gauge
theory amplitudes is not yet revealed...
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