QED at high intensity and high energy

Anton Ilderton Trinity College, Dublin

IPPP, Durham University 14-05-2009

- arXiv:0903.415 and papers to appear soon.
- With Chris Harvey, Tom Heinzl (Plymouth), Mattias Marklund (Umeå).

KOD KARD KED KED E YORA

Outline

- Motivation energy and intensity.
- Background fields in QED.
	- Background generated by coherent states.
	- 'Furry picture' and calculations.
- Intensity effects: nonlinear Compton scattering.
	- Background driven processes.
	- Intensity effects and observables.
- High intensity, high energy: noncommutative effects.
	- High energy $QED +$ backgrounds.
	- Noncommutative corrections to intensity effects.

KORK ERKER ADAM ADA

Motivation

- 1. LHC is coming. Higgs? New physics SUSY?
- Further off, ILC and CLIC.
- 2. Optical lasers probe 'high intensity, low energy' QED.
	- Laser fields currently at 10^{22} W/cm² (Vulcan).
	- ELI and HiPER will reach 10^{25} W/cm².
	- High intensity \rightarrow 'new' physics: birefringence, pair production, i.e. effects which do not occur in vacuum.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Part 1– background fields in QED

High intensity \rightarrow background fields

• High intensity: very large numbers of photons present.

- How many:
- incoming laser photons?
- $-$ interactions with $e^-(p)$?

KORK STRAIN A BAR SHOP

• Look for approximations which allow us to calculate.

High intensity \rightarrow background fields

- Large photon numbers \implies treat the laser classically.
- Laser \rightarrow classical background field, $a_{\mu}(x)$. Kibble 1964
- Essentially, neglect depletion of the beam.

Bialynicki–Birula, 1973

KORKAR KERKER E VOOR

- Approach from a scattering perspective.
- 1. Start with asymptotic states. Generate background field.
- 2. Relate to $A_\mu \rightarrow A_\mu + a_\mu$ shift.

KOD KARD KED KED E VOOR

Coherent asymptotic states

• Model laser asymptotically by coherent state of photons.

$$
|\hspace{0.1cm}C\hspace{0.1cm}\rangle=\exp\int\!\frac{\mathrm{d}^3k}{(2\pi)^3}\hspace{0.1cm}C^{\mu}(\boldsymbol{k})\hat{a}^{\dagger}_{\mu}(\boldsymbol{k})\hspace{0.1cm}| \hspace{0.1cm}0\hspace{0.1cm}\rangle
$$

- $C^{\mu}(\boldsymbol{k})$: spread of polarisations and momenta (in beam).
- These are 'most classical' states (minimal uncertainty).
- Consider asymptotic states of scattered particles ('in', 'out') and coherent states C,

$$
\langle \mathsf{out}; C\,|\ldots|\mathsf{in};C\,\rangle
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Coherent states in quantum mechanics

- Quantum harmonic oscillator: $H = \omega (\hat{a}^\dagger \hat{a} + \frac{1}{2})$ $(\frac{1}{2})$.
- Vacuum state: $\hat{a}|0\rangle = 0$. Vacuum wavefunction

$$
\hat{a}\,\psi_0(x)\propto\left[x+i\omega^{-1}\hat{p}\right]\psi_0(x)=0\implies\psi_0(x)=\exp\left(-\frac{\omega}{2}x^2\right)
$$

KORKAR KERKER E VOOR

Coherent states in quantum mechanics

- Quantum harmonic oscillator: $H = \omega (\hat{a}^\dagger \hat{a} + \frac{1}{2})$ $(\frac{1}{2})$.
- Vacuum state: $\hat{a}|0\rangle = 0$. Vacuum wavefunction

$$
\hat{a}\,\psi_0(x)\propto\left[x+i\omega^{-1}\hat{p}\right]\psi_0(x)=0\implies\psi_0(x)=\exp\left(-\frac{\omega}{2}x^2\right)
$$

• Coherent state: $|c\rangle = \exp(c \hat{a}^\dagger)|0\rangle$. Wavefunction:

$$
\psi_c(x) = \exp\left(-\frac{\omega}{2}(x-c)^2\right)
$$

• This is a (config. space) translation of the vacuum state:

$$
|\,c\,\rangle = \mathbb{T}_c|\,0\,\rangle\;.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Scattering between coherent states

• Represent our coherent states as translations:

$$
\langle \mathsf{out}; C \, | = \langle \mathsf{out} | \mathbb{T}_C^{\dagger} , \qquad | \mathsf{in}; C \rangle = \mathbb{T}_C | \mathsf{in} \rangle \ .
$$

• Now calculate S–matrix elements: $\mathbb{S} = \mathcal{T} e^{-i \int \mathrm{d}t \; H_I(t)}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Scattering between coherent states

• Represent our coherent states as translations:

$$
\langle \mathsf{out}; C \, | = \langle \mathsf{out} | \mathbb{T}_C^{\dagger} , \qquad | \mathsf{in}; C \rangle = \mathbb{T}_C | \mathsf{in} \rangle \ .
$$

• Now calculate S–matrix elements: $\mathbb{S} = \mathcal{T} e^{-i \int \mathrm{d}t \; H_I(t)}$

$$
\langle\, {\mathsf{out}}; C\, |{\mathbb{S}}|\, \mathsf{in}; C\, \rangle = \langle\, {\mathsf{out}}\, |{\mathbb{T}}_C^\dagger {\mathbb{S}} {\mathbb{T}}_C|\, \mathsf{in}\, \rangle = \langle\, {\mathsf{out}}\, |{\mathbb{S}}[a]|\, \mathsf{in}\, \rangle
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Scattering between coherent states

• Represent our coherent states as translations:

$$
\langle \mathsf{out}; C \, | = \langle \mathsf{out} | \mathbb{T}_C^{\dagger} , \qquad | \mathsf{in}; C \rangle = \mathbb{T}_C | \mathsf{in} \rangle \ .
$$

• Now calculate S–matrix elements: $\mathbb{S} = \mathcal{T} e^{-i \int \mathrm{d}t \; H_I(t)}$

$$
\langle\, {\mathsf{out}}; C\, |{\mathbb{S}}|\, \mathsf{in}; C\, \rangle = \langle\, {\mathsf{out}}\, |{\mathbb{T}}_C^\dagger {\mathbb{S}} {\mathbb{T}}_C|\, \mathsf{in}\, \rangle = \langle\, {\mathsf{out}}\, |{\mathbb{S}}[a]|\, \mathsf{in}\, \rangle
$$

- Shift in interaction Hamiltonian (only):
- $A_u \rightarrow A_u + a_u$, a classical background field.
- a_{μ} = on–shell Fourier transform of $C_{\mu}(\mathbf{k})$.

KOD KARD KED KED E VOOR

Coherence \rightarrow background field

- Coherent state \leftrightarrow interactions with background field:
- Interaction vertex: $\overline{\psi} A \psi \rightarrow \overline{\psi} A \psi + \overline{\psi} \phi \psi$
- S–matrix elements from amputated Feynman diagrams generated by:

$$
\text{Amp.} \int \mathcal{D}(A,\psi) \, \langle \psi \dots A \dots \rangle \, \mathrm{e}^{i \int \mathcal{L}_a}
$$
\n
$$
\mathcal{L}_a = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\psi} (i \partial \!\!\!/ - m) \psi - e \overline{\psi} \phi \psi - e \overline{\psi} A \psi
$$

Coherence \rightarrow background field

- Coherent state \leftrightarrow interactions with background field:
- Interaction vertex: $\overline{\psi} A \psi \rightarrow \overline{\psi} A \psi + \overline{\psi} \phi \psi$
- S–matrix elements from amputated Feynman diagrams generated by:

$$
\text{Amp.} \int \mathcal{D}(A,\psi) \, \langle \psi \dots A \dots \rangle \, \mathrm{e}^{i \int \mathcal{L}_a}
$$
\n
$$
\mathcal{L}_a = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\psi} (i \partial \!\!\!/ - m) \psi - e \overline{\psi} \phi \psi - e \overline{\psi} A \psi
$$

• Compare: asymptotic vacuum $\rightarrow i\epsilon$ prescription

Weinberg, QFT Vol 1.

KOD KARD KED KED E VOOR

• The 'shifted vacuum' gives $i\epsilon$ and interactions.

KOD KARD KED KED E VOOR

The Furry picture

- Take above action as a starting point.
- Background fields \leftrightarrow Furry picture. Furry, PRD 81 (1951)
- Choose 'free'–'interacting' split in Hamiltonian.
- Compare interaction picture (use Lagrangian for clarity)

$$
\mathcal{L}_a = \underbrace{-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\partial\!\!\!/-m)\psi}_{\text{free}} \underbrace{-e\overline{\psi}\phi\psi - e\overline{\psi}\not\!\!A\psi}_{\text{interacting}} \; .
$$

KORK ERKER ADAM ADA

The Furry picture

- Take above action as a starting point.
- Background fields \leftrightarrow Furry picture. Furry, PRD 81 (1951)
- Choose 'free'–'interacting' split in Hamiltonian.
- Compare interaction picture (use Lagrangian for clarity)

$$
\mathcal{L}_a = \underbrace{-\tfrac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\partial\!\!\!/-m)\psi - e\overline{\psi}\phi\psi}_{\text{free}}\underbrace{-e\overline{\psi}\not\!\!A\psi}_{\text{interacting}}\;.
$$

• Interactions with the background \rightarrow 'free' Hamiltonian.

KOD KARD KED KED E VOOR

The Furry picture

$$
\mathcal{L}_a = \underbrace{-\tfrac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\partial\!\!\!/-m)\psi - e\overline{\psi}\phi\psi}_{\text{free}}\underbrace{-e\overline{\psi}A\psi}_{\text{interacting}}\;.
$$

- Canonical quantisation:
	- Free ('bound') states see background field.
	- New commutation relations between modes.
	- Canonical transform of interaction picture fields.
	- New charge conjugation relations.
- Continue working with S–matrix and Feynman diagrams.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Calculating 'without' the Furry picture

$$
\mathcal{L}_a = \underbrace{-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\partial\!\!\!/ - m)\psi - e\overline{\psi}\phi\psi}_{\text{free}} \underbrace{-e\overline{\psi}A\psi}_{\text{interacting}}.
$$
\n• Feynman diagrams:
$$
\int \mathcal{D}(A,\psi) \langle \psi \dots A \dots \rangle \exp i \int \mathcal{L}_a
$$

-
- Propagators \leftarrow inverse of quadratic terms.

KOD KARD KED KED E VOOR

Calculating 'without' the Furry picture

$$
\mathcal{L}_a = \underbrace{-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\partial\!\!\!/-m)\psi - e\overline{\psi}\phi\psi}_{\text{free}} \underbrace{-e\overline{\psi}A\psi}_{\text{interacting}}.
$$

- $\bullet\,$ Feynman diagrams: $\int {\cal D}(A,\psi)\,\left\langle \psi \ldots A \ldots \right\rangle\,\, \exp i \int {\cal L}_a$
- Propagators \leftarrow inverse of quadratic terms.

- Background 'dresses' free propagator.
- Other effects?

KOD KARD KED KED E VOOR

Calculating 'without' the Furry picture

$$
\mathcal{L}_a = \underbrace{-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\partial\!\!\!/-m)\psi - e\overline{\psi}\phi\psi}_{\text{free}}\underbrace{-e\overline{\psi}A\psi}_{\text{interacting}}\;.
$$

- That's all! Only vertex is $\overline{\psi}A\psi$.
- To calculate S–matrix elements:
- 1. Write down usual Feynman diagrams, but with dressed fermion lines.
- 2. Amputate external photon legs as normal.
- 3. Amputating external fermions \rightarrow Volkov wavefunctions.

KOD KARD KED KED E VOOR

External legs: Volkov wavefunctions

• Amputating free propagator \rightarrow free spinor wavefunctions:

$$
\exp(-ip.x) u_p , \qquad \not p u_p = m u_p
$$

- Amputating dressed propagator \rightarrow Volkov wavefunctions.
- Solutions of Dirac eqn. in background a_{μ} . $v_{\text{olkov, 1935}}$
- Assume throughout that $a_{\mu} \equiv a_{\mu}(k.x)$, a plane wave

KORKAR KERKER E VOOR

External legs: Volkov wavefunctions

• Amputating free propagator \rightarrow free spinor wavefunctions:

$$
\exp(-ip.x) u_p , \qquad \not p u_p = m u_p
$$

- Amputating dressed propagator \rightarrow Volkov wavefunctions.
- Solutions of Dirac eqn. in background a_{μ} . $v_{\text{olkov, 1935}}$
- Assume throughout that $a_{\mu} \equiv a_{\mu}(k.x)$, a plane wave:

$$
e^{-ip.x}\exp\bigg(\frac{1}{2ik.p}\int^{k.x} \hspace{-0.2cm} 2e\,a.p - e^2a^2\bigg)\bigg[\mathbbm{1} + \frac{e}{2k.p}\rlap/k\rlap{/}d\bigg]u_p\;,
$$

• S-matrix elements not supported on usual momentum conserving delta functions.

K ロ > K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

Part 2– Intensity effects: nonlinear Compton scattering.

Spontaneous photon emission

• Spontaneous (real) photon emission.

• Cannot occur in vacuum because of momentum conservation:

$$
p_{\mu} \neq k'_{\mu} + p'_{\mu} .
$$

Spontaneous photon emission

• Spontaneous (real) photon emission.

• Cannot occur in vacuum because of momentum conservation:

 $p_{\mu} \neq k'_{\mu} + p'_{\mu}$.

- Can happen in the presence of a background field.
- Background \rightarrow source of extra energy needed to put the photon on–shell.

KORK STRAIN A BAR SHOP

• 'Nonlinear Compton scattering'.

Nonlinear Compton scattering

• Our laser background: circularly polarised plane wave:

$$
a^{\mu}(x) = a_1^{\mu} \cos k \cdot x + a_2^{\mu} \sin k \cdot x.
$$

•
$$
a_i \cdot a_j = -|a|^2 \delta_{ij} < 0.
$$

• $k_{\mu}k^{\mu} = 0$, beam direction and frequency, $k_{\mu} \sim \omega(1,0,0,1)$.

• We define the dimensionless intensity parameter

T.H., A.I, Opt. Comm. 09

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 $a_0 = \frac{e|a|}{m}$ $\frac{m}{m}$, parameterises all background effects.

• $a_0 \approx 20$ (FZD, Vulcan), $a_0 \approx 10^3 \rightarrow 10^4$ (ELI, HiPER).

The S–matrix and cross section

- Head on collision between e^- and laser: $p_\mu \rightarrow k'_\mu + p'_\mu$
- S–matrix element, summed over spins and polarisations:

Gol'dmann, Nikishov, Ritus, Narozhnyi 1964

$$
\frac{1}{VT} \sum |S_{\rm fi}|^2 = \sum_{n=1}^{\infty} S_n \, \delta^4 \left(q_{\mu} + nk_{\mu} - q'_{\mu} - k'_{\mu} \right) \; .
$$

- An ∞ sum of contributions with different kinematic support.
- Amplitudes S_n below.
- First examine kinematics \Leftarrow delta functions.

Kinematics of
$$
q_{\mu} + nk_{\mu} = q'_{\mu} + k'_{\mu}
$$

• Electron 'quasi-momenta' q_{μ} , shifted by intensity effects

$$
q_{\mu} := p_{\mu} + \frac{a_0^2 m^2}{2p.k} k_{\mu} .
$$

• Implies 'effective mass': $q^2 = m^2(1 + a_0^2) \equiv m_*^2$

Sengupta 1952

KORK STRATER STRAKES

Kinematics of
$$
q_{\mu} + nk_{\mu} = q'_{\mu} + k'_{\mu}
$$

• Electron 'quasi–momenta' q_{μ} , shifted by intensity effects

$$
q_{\mu} := p_{\mu} + \frac{a_0^2 m^2}{2p.k} k_{\mu} .
$$

• Implies 'effective mass': $q^2 = m^2(1 + a_0^2) \equiv m_*^2$

Sengupta 1952

KOD KAR KED KED E YORA

• n^{th} contribution to scattering $(n = 1 \ldots \infty)$:

- Effective process.
- 1. Incoming heavy electron, $q^2 = m_*^2$,
- 2. Absorbs *n* laser 'quanta' k_{μ} ,
- 3. Emits one scattered photon k'_μ .

Kinematics of
$$
q_{\mu} + nk_{\mu} = q'_{\mu} + k'_{\mu}
$$

- These multi-photon 'harmonic processes' are the origin of the name 'nonlinear' Compton scattering.
- Mass shift not observed directly.
- Higher harmonic generation has been observed.

Chen et. al., Nature 1998

KORK ERKER ADAM ADA

- Quasi–momentum conservation \implies relations for on–shell momenta.
- Contributions from different harmonics are observable, even though q_{μ} , q'_{μ} not on–shell.

Scattering amplitude

• The S-matrix amplitudes have the form Narozhnyi 1964

$$
S_n = -2J_n^2(z) + a_0^2 \left(1 + \frac{x^2}{2(1+x)}\right) \left(J_{n+1}^2(z) + J_{n-1}^2(z) - 2J_n^2(z)\right)
$$

•
$$
x = k.k'/k.p'
$$
 and $z \equiv z(x)$.

- Cross section independent of angle azimuthal to the beam. Due to:
- 1. Sum over polarisations,
- 2. Circular polarisation of beam.
	- Lab frame: $x \rightarrow$ scattered photon frequency/ scattering angle.

Cross section comparison

• Compare our cross section with ordinary Compton.

- $n = 1 \dots \infty$ processes.
- High intensity, $a_0 > 1$.

• Ordinary Compton: one photon.

- \bullet $n=1$.
- Low intensity: $a_0 = 0$.

Non–linear Compton: cross section

Non–linear Compton: cross section

• Plot against $\nu' \equiv \omega'/m$.

• e^- 40 MeV ω : 1eV

• Linear Compton in blue. $(n=1, a_0=0)$

• FZD:
$$
a_0 \rightarrow 20
$$
.

• Compton edge redshifted.

• Harmonics: $n = 1, 2, 3, 4$.

Non–linear Compton: cross section

- Sum of first 50 harmonics. C.H., A.I., T.H. 2009
- Red shift of Compton edge.
- Higher harmonics:

scattered photons can have higher energy.

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \Rightarrow

 2990

 2990

B

Non–linear Compton: cross section

- Sum of first 50 harmonics. C.H., A.I., T.H. 2009
- Red shift of Compton edge.
- Higher harmonics:

scattered photons can have higher energy.

• Many other effects (see paper).

メロメ メ都 メメ きょ メモメ

• Non–linear edge is strongest signal.

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Part 3– High intensity, high energy: noncommutative effects.

KORK ERKER ADE YOUR

A source of new physics

- Chosen source of new physics: spacetime noncommutativity.
- $[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu} \implies$ spacetime becomes 'fuzzy':

$$
[x, y] = i\theta \implies \Delta x \Delta y \ge \frac{|\theta|}{2}, \quad \text{a minimum area.}
$$

- Originally proposed to deal with UV.
- UV/ IR mixing. Grosse, Wulkenhaar 2003, 2005
- • New interest after reappearance in string theory.

NC QED

• Field theory: replace field products with Moyal–star products.

$$
f(x) \star g(x) = f(x) \exp \left[\frac{i}{2} \overleftrightarrow{\partial}_{\mu} \theta^{\mu \nu} \overrightarrow{\partial}_{\nu}\right] g(x)
$$
.

• NC QED Lagrangian: Hayakawa, 1999

KORK ERKER ADE YOUR

$$
\mathcal{L} = -\frac{1}{4}F_{\mu\nu} \star F^{\mu\nu} + \overline{\psi} \star (i\rlap{\,/}D - m) \star \psi
$$

• Gauge group replaced by \star –gauge group:

$$
F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ie[A_{\mu}\star A_{\nu}]
$$

• Photon is self-interacting – $A^{\star 3}$, $A^{\star 4}$ vertices.

KORK STRATER STRAKER

NC QED $+$ background

- Introduce background: $A_{\mu} \rightarrow A_{\mu} + a_{\mu}$ in interactions.
- New terms: $\overline{\psi} \star \phi \star \psi$, c.f. QED, etc.
- Electron, photon propagators both dressed by background.
- New terms: $a \star A^{\star 3}$, etc: vertices

NC QED $+$ background

- Introduce background: $A_{\mu} \rightarrow A_{\mu} + a_{\mu}$ in interactions.
- New terms: $\overline{\psi} \star d \star \psi$, c.f. QED, etc.
- Electron, photon propagators both dressed by background.
- New terms: $a \star A^{\star 3}$, etc: vertices

• Don't contribute to nonlinear Compton.

KORKAR KERKER E VOOR

- Only vertex is $\overline{\psi} \star A \star \psi$.
- Pair production from crossing.

• Highlight some NC corrections to our scattering process.

External NC electron legs

- Amputated electron leg has same form as QED Volkov.
- But sees a background and alvarez-Gaumé, Barbón, 2000

KORK STRATER STRAKER

$$
\tilde{a}_{\mu}(k.x) := a_{\mu}(k.x + k \wedge p)
$$

•
$$
k \wedge p := \frac{1}{2}k \cdot \theta \cdot p
$$
, for p the electron momentum.

- Electrons see fields later/ earlier than commutative counterparts.
- Quasi–momenta as before: same mass shift $m \to m_*$.

External photon lines

• Amputating photon leg gives: T.H., A.I., M.M., to appear

$$
e^{-ik'.x}\exp\bigg(\frac{1}{2ik.k'}\int\limits^{k.x}\!\!\!\!\!2e\mathcal{A}.k'\!-\!e^2\mathcal{A}^2\bigg)\bigg[\delta^{\mu}_{\nu}\!+\!\frac{e}{2k.k'}(k^{\mu}\mathcal{A}_{\nu}\!-\!\mathcal{A}^{\mu}k_{\nu})\bigg]\epsilon^{\nu}
$$

- Very similar to electron Volkov solution.
- Scattered photon sees the background

$$
\mathcal{A}_{\mu}(k.x) := a_{\mu}(k.x + k \wedge k') - a_{\mu}(k.x - k \wedge k')
$$

• Photon is extended in NCQED. A dipole of length $k \cdot \theta \cdot k'$.

Alvarez-Gaumé, Barbón, 2000

KORK ERKER ADE YOUR

NC corrections to cross section

 \rightarrow Corrections to nonlinear Compton and pair production.

T.H., A.I., M.M., to appear

• Sensitive to lightlike noncommutativity: $k \wedge \sim \theta^{+\nu}$.

Aharony, Gomis, Mehan 2000

KORK ERKER ADE YOUR

- Cross section now depends on azimuthal angle, due to preferred direction $\theta^{+\nu}$.
- Deviations from QED predictions.

- Nonlinear Compton: photon scattered in preferred directions.
- Pair production: pairs produced with preferred directions.

KORK STRATER STRAKER

Size of NC effects

- Nonlinear Compton $\sim a_0^2 \sin^2(k \wedge k'_{\text{out}})$.
- Need laser at both high energy $+$ intensity.
- Detection not likely with all–optical setup ($\omega \sim 1$ eV).

KORK ERKER ADE YOUR

Size of NC effects

- Nonlinear Compton $\sim a_0^2 \sin^2(k \wedge k'_{\text{out}})$.
- Need laser at both high energy $+$ intensity.
- Detection not likely with all–optical setup ($\omega \sim 1$ eV).
- Pair production $\sim a_0^2 \sin^2(k \wedge p'_{\text{out}})$.
- \checkmark Intense laser + high energy probe.
- $\sqrt{}$ High energy photons \leftarrow Compton back scattering.
- Measure $\%$ deviation from QED (relative cross section).

$$
\frac{\mathrm{d}\sigma_{\text{rel}}}{\mathrm{d}\phi}:=\left(\frac{\mathrm{d}\sigma_{\text{NC}}}{\mathrm{d}\phi}-\frac{\mathrm{d}\sigma_{\text{QED}}}{\mathrm{d}\phi}\right)\bigg/\frac{\mathrm{d}\sigma_{\text{QED}}}{\mathrm{d}\phi}
$$

Example NC cross section

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

• NC scale = 1.5 TeV, $E_p = 500$ GeV, $\omega = 1$ TeV

[Backgrounds](#page-4-0) **[Intensity](#page-23-0) [Energy](#page-37-0) [Conclusions](#page-47-0) Conclusions** Energy Energy Conclusions **Conclusions**

KORK STRATER STRAKER

Conclusions and prospects

- Interactions with background fields \leftarrow coherent states.
- Calculations straightforward in LSZ picture.
- \rightarrow Extend calculations beyond plane wave fields.
- \rightarrow Gaussian profile, for example, to model laser pulse.
- \rightarrow Loop corrections.
	- Intensity effects observable at current laser facilities.
- \rightarrow Comparison with theory – backgrounds, noise.

[Backgrounds](#page-4-0) **[Intensity](#page-23-0) [Energy](#page-37-0) [Conclusions](#page-47-0) Conclusions** Energy Energy Conclusions **Conclusions**

KORK STRATER STRAKER

Conclusions and prospects

- NC can be detected with energetic probes.
- \rightarrow High energy probe required: pair production.
	- Intensity effects acquire azimuthal dependencies.
	- Scattered particles produced with preference for certain directions.
	- Increased intensity increases sensitivity to NC.