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Outline

• Motivation – energy and intensity.

• Background fields in QED.
• Background generated by coherent states.

• ‘Furry picture’ and calculations.

• Intensity effects: nonlinear Compton scattering.
• Background driven processes.

• Intensity effects and observables.

• High intensity, high energy: noncommutative effects.
• High energy QED + backgrounds.

• Noncommutative corrections to intensity effects.
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Motivation

1. LHC is coming. Higgs? New physics – SUSY?

• Further off, ILC and CLIC.

2. Optical lasers probe ‘high intensity, low energy’ QED.

• Laser fields currently at 1022 W/cm2 (Vulcan) .

• ELI and HiPER will reach 1025 W/cm2 .

• High intensity → ‘new’ physics: birefringence, pair production,

i.e. effects which do not occur in vacuum.
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Part 1– background fields in QED
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High intensity → background fields

• High intensity: very large numbers of photons present.

• How many:

– incoming laser photons?

– interactions with e−(p)?

• Look for approximations which allow us to calculate.
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High intensity → background fields

• Large photon numbers =⇒ treat the laser classically.

• Laser → classical background field, aµ(x). Kibble 1964

• Essentially, neglect depletion of the beam.
Bialynicki–Birula, 1973

• Approach from a scattering perspective.

1. Start with asymptotic states. Generate background field.

2. Relate to Aµ → Aµ + aµ shift.
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Coherent asymptotic states

• Model laser asymptotically by coherent state of photons.

|C 〉 = exp
∫

d3k

(2π)3
Cµ(k)â†µ(k) | 0 〉

• Cµ(k): spread of polarisations and momenta (in beam).

• These are ‘most classical’ states (minimal uncertainty).

• Consider asymptotic states of scattered particles (‘in’, ‘out’)
and coherent states C,

〈 out;C | . . . | in;C 〉



Backgrounds Intensity Energy Conclusions

Coherent states in quantum mechanics

• Quantum harmonic oscillator: H = ω(â†â+ 1
2) .

• Vacuum state: â| 0 〉 = 0. Vacuum wavefunction

â ψ0(x) ∝
[
x+ iω−1p̂

]
ψ0(x) = 0 =⇒ ψ0(x) = exp

(
− ω

2
x2
)

• Coherent state: | c 〉 = exp(c â†)| 0 〉. Wavefunction:

ψc(x) = exp
(
− ω

2
(x− c)2

)
• This is a (config. space) translation of the vacuum state:

| c 〉 = Tc| 0 〉 .
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Scattering between coherent states

• Represent our coherent states as translations:

〈 out;C | = 〈 out |T†C , | in;C 〉 = TC | in 〉 .

• Now calculate S–matrix elements: S = T e−i
∫

dt HI(t)

〈 out;C |S| in;C 〉 = 〈 out |T†CSTC | in 〉 = 〈 out |S[a]| in 〉

• Shift in interaction Hamiltonian (only):

• Aµ → Aµ + aµ, a classical background field.

• aµ = on–shell Fourier transform of Cµ(k).
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Coherence → background field

• Coherent state ↔ interactions with background field:

• Interaction vertex: ψA/ψ → ψA/ψ + ψa/ψ

• S–matrix elements from amputated Feynman diagrams
generated by:

Amp.

∫
D(A,ψ) 〈ψ . . . A . . .〉 ei

∫
La

La = −1
4FµνF

µν + ψ(i∂/−m)ψ−eψa/ψ − eψA/ψ

• Compare: asymptotic vacuum → iε prescription
Weinberg, QFT Vol 1.

• The ‘shifted vacuum’ gives iε and interactions.
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The Furry picture

• Take above action as a starting point.

• Background fields ↔ Furry picture. Furry, PRD 81 (1951)

• Choose ‘free’–‘interacting’ split in Hamiltonian.

• Compare interaction picture (use Lagrangian for clarity)

La = −1
4FµνF

µν + ψ(i∂/−m)ψ︸ ︷︷ ︸
free

− eψa/ψ − eψA/ψ︸ ︷︷ ︸
interacting

.

Interactions with the background → ‘free’ Hamiltonian.
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The Furry picture

La = −1
4FµνF

µν + ψ(i∂/−m)ψ − eψa/ψ︸ ︷︷ ︸
free

−eψA/ψ︸ ︷︷ ︸
interacting

.

• Canonical quantisation:

• Free (‘bound’) states see background field.

• New commutation relations between modes.

• Canonical transform of interaction picture fields.

• New charge conjugation relations.

• Continue working with S–matrix and Feynman diagrams.
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Calculating ‘without’ the Furry picture

La = −1
4FµνF

µν + ψ(i∂/−m)ψ − eψa/ψ︸ ︷︷ ︸
free

−eψA/ψ︸ ︷︷ ︸
interacting

.

• Feynman diagrams:

∫
D(A,ψ) 〈ψ . . . A . . .〉 exp i

∫
La

• Propagators ← inverse of quadratic terms.

• Background ‘dresses’ free propagator.

• Other effects?
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Calculating ‘without’ the Furry picture

La = −1
4FµνF

µν + ψ(i∂/−m)ψ − eψa/ψ︸ ︷︷ ︸
free

−eψA/ψ︸ ︷︷ ︸
interacting

.

• That’s all! Only vertex is ψA/ψ.

• To calculate S–matrix elements:

1. Write down usual Feynman diagrams, but with dressed
fermion lines.

2. Amputate external photon legs as normal.

3. Amputating external fermions → Volkov wavefunctions.
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External legs: Volkov wavefunctions

• Amputating free propagator → free spinor wavefunctions:

exp(−ip.x)up , p/ up = mup

• Amputating dressed propagator → Volkov wavefunctions.

• Solutions of Dirac eqn. in background aµ. Volkov, 1935

• Assume throughout that aµ ≡ aµ(k.x), a plane wave

:

e−ip.x exp
(

1
2ik.p

k.x∫
2e a.p− e2a2

)[
1 +

e

2k.p
k/a/

]
up ,

• S–matrix elements not supported on usual momentum
conserving delta functions.
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Part 2– Intensity effects: nonlinear Compton scattering.
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Spontaneous photon emission

• Spontaneous (real) photon emission.

• Cannot occur in vacuum because of
momentum conservation:

pµ 6= k′µ + p′µ .

• Can happen in the presence of a
background field.

• Background → source of extra energy
needed to put the photon on–shell.

• ‘Nonlinear Compton scattering’.
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Nonlinear Compton scattering

• Our laser background: circularly polarised plane wave:

aµ(x) = aµ1 cos k ·x+ aµ2 sin k ·x .

• ai ·aj = −|a|2δij < 0.

• kµkµ = 0, beam direction and frequency, kµ ∼ ω(1, 0, 0, 1).

• We define the dimensionless intensity parameter
T.H., A.I, Opt. Comm. 09

a0 =
e|a|
m

, parameterises all background effects.

• a0 ≈ 20 (FZD, Vulcan), a0 ≈ 103 → 104 (ELI, HiPER).
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The S–matrix and cross section

• Head on collision between e− and laser: pµ → k′µ + p′µ

• S–matrix element, summed over spins and polarisations:
Gol’dmann, Nikishov, Ritus, Narozhnyi 1964

1
V T

∑
|Sfi|2 =

∞∑
n=1

Sn δ4
(
qµ + nkµ − q′µ − k′µ

)
.

• An ∞ sum of contributions with different kinematic support.

• Amplitudes Sn below.

• First examine kinematics ⇐= delta functions.
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Kinematics of qµ + nkµ = q′µ + k′µ

• Electron ‘quasi–momenta’ qµ, shifted by intensity effects

qµ := pµ +
a2

0m
2

2p.k
kµ .

• Implies ‘effective mass’: q2 = m2(1 + a2
0) ≡ m2

∗
Sengupta 1952

• nth contribution to scattering (n = 1 . . .∞):

• Effective process.

1. Incoming heavy electron, q2 = m2
∗,

2. Absorbs n laser ‘quanta’ kµ,

3. Emits one scattered photon k′µ.
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Kinematics of qµ + nkµ = q′µ + k′µ

• These multi–photon ‘harmonic processes’ are the origin

of the name ‘nonlinear’ Compton scattering.

• Mass shift not observed directly.

• Higher harmonic generation has been observed.
Chen et. al., Nature 1998

• Quasi–momentum conservation =⇒ relations for on–shell
momenta.

• Contributions from different harmonics are observable,
even though qµ, q′µ not on–shell.
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Scattering amplitude

• The S–matrix amplitudes have the form Narozhnyi 1964

Sn = −2J2
n(z)+a2

0

(
1+

x2

2(1 + x)

)(
J2
n+1(z)+J2

n−1(z)−2J2
n(z)

)
• x = k.k′/k.p′ and z ≡ z(x).

• Cross section independent of angle azimuthal to the beam.
Due to:

1. Sum over polarisations,

2. Circular polarisation of beam.

• Lab frame: x→ scattered photon frequency/ scattering angle.
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Cross section comparison

• Compare our cross section with ordinary Compton.

• Nonlinear Compton: many photons.

• n = 1 . . .∞ processes.

• High intensity, a0 > 1.

• Ordinary Compton: one photon.

• n = 1.

• Low intensity: a0 = 0.
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Non–linear Compton: cross section

• Plot against ν ′ ≡ ω′/m.

• e−: 40 MeV
ω: 1eV

• Linear Compton in blue.
(n = 1, a0 = 0)

FZD: a0 → 20

Compton edge redshifted

Harmonics: n = 1, 2, 3, 4
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Non–linear Compton: cross section

• Sum of first 50 harmonics.
C.H., A.I., T.H. 2009

• Red shift of Compton edge.

• Higher harmonics:

scattered photons can have
higher energy.

Many other effects (see
paper).

Non–linear edge
is strongest signal.
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Part 3– High intensity, high energy: noncommutative effects.
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A source of new physics

• Chosen source of new physics: spacetime noncommutativity.

• [xµ, xν ] = iθµν =⇒ spacetime becomes ‘fuzzy’:

[x, y] = iθ =⇒ ∆x∆y ≥ |θ|
2
, a minimum area.

• Originally proposed to deal with UV.

• UV/ IR mixing. Grosse, Wulkenhaar 2003, 2005

• New interest after reappearance in string theory.
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NC QED

• Field theory: replace field products with Moyal–star products.

f(x) ? g(x) = f(x) exp
[
i
2

←
∂ µθ

µν
→
∂ ν
]
g(x) .

• NC QED Lagrangian: Hayakawa, 1999

L = −1
4Fµν ? F

µν + ψ ? (iD/−m) ? ψ

• Gauge group replaced by ?–gauge group:

Fµν = ∂µAν − ∂νAµ + ie[Aµ?, Aν ]

• Photon is self–interacting – A?3, A?4 vertices.
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NC QED + background

• Introduce background: Aµ → Aµ + aµ in interactions.

• New terms: ψ ? a/ ? ψ, c.f. QED, etc.

• Electron, photon propagators both dressed by background.

• New terms: a ? A?3, etc: vertices

• Don’t contribute to nonlinear Compton.

• Only vertex is ψ ? A/ ? ψ.

• Pair production from crossing.

• Highlight some NC corrections to our scattering process.
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External NC electron legs

• Amputated electron leg has same form as QED Volkov.

• But sees a background Alvarez–Gaumé, Barbón, 2000

ãµ(k.x) := aµ(k.x+k ∧ p)

• k ∧ p := 1
2k · θ · p, for p the electron momentum.

• Electrons see fields later/ earlier than commutative
counterparts.

• Quasi–momenta as before: same mass shift m→ m∗.
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External photon lines

• Amputating photon leg gives: T.H., A.I., M.M., to appear

e−ik
′.x exp

(
1

2ik.k′

k.x∫
2eA.k′−e2A2

)[
δµν+

e

2k.k′
(kµAν−Aµkν)

]
εν

• Very similar to electron Volkov solution.

• Scattered photon sees the background

Aµ(k.x) := aµ(k.x+k ∧ k′)− aµ(k.x−k ∧ k′)

• Photon is extended in NCQED. A dipole of length k · θ · k′.
Alvarez–Gaumé, Barbón, 2000
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NC corrections to cross section

→ Corrections to nonlinear Compton and pair production.
T.H., A.I., M.M., to appear

• Sensitive to lightlike noncommutativity: k∧ ∼ θ+ν .
Aharony, Gomis, Mehan 2000

• Cross section now depends on azimuthal angle,

due to preferred direction θ+ν .

=⇒ Deviations from QED predictions.

• Nonlinear Compton: photon scattered in
preferred directions.

• Pair production: pairs produced with
preferred directions.
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Size of NC effects

• Nonlinear Compton ∼ a2
0 sin2(k ∧ k′out).

• Need laser at both high energy + intensity.

• Detection not likely with all–optical setup (ω ∼ 1 eV).

• Pair production ∼ a2
0 sin2(k ∧ p′out).

X Intense laser + high energy probe.

X High energy photons ← Compton back scattering .

• Measure % deviation from QED (relative cross section).

dσrel

dφ
:=
(

dσNC

dφ
− dσQED

dφ

)/
dσQED

dφ
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Example NC cross section

• Azimuthal dependence
relative to QED.

• a0 = 10, 103, 104

(Vulcan → ELI).

• Order 1% effect.

• Higher intensity increases
sensitivity.

• NC scale = 1.5 TeV, Ep = 500 GeV, ω = 1 TeV
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Conclusions and prospects

• Interactions with background fields ← coherent states.

• Calculations straightforward in LSZ picture.

→ Extend calculations beyond plane wave fields.

→ Gaussian profile, for example, to model laser pulse.

→ Loop corrections.

• Intensity effects observable at current laser facilities.

→ Comparison with theory – backgrounds, noise.
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Conclusions and prospects

• NC can be detected with energetic probes.

→ High energy probe required: pair production.

• Intensity effects acquire azimuthal dependencies.

• Scattered particles produced with preference for certain
directions.

• Increased intensity increases sensitivity to NC.
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