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Motivation

LHC is a proton-proton collider, and the physical events to be
studied are collision events;

The events are related to physical quantities in a statistical manner
via distributions;

physics at LHC demands precise qualitative knowledge about
signals and backgrounds;

Monte Carlo programs are a preferred tools to crystallize such
knowledge;

multi-leg hard processes need to be included in these. Many
interesting signals (Higgs production) include decaying heavy
particles.

NLO corrections have to be included
to reduce scale dependence;
to get better description of shapes of distributions;

several groups of researchers are dealing with the problem of
calculating multi-leg processes at NLO.
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Motivation

Backgrounds

pp → V V + j Dittmaier,Kallweit,Uwer; Campbell,Ellis,Zanderighi

pp → tt̄ bb̄ Bredenstein,Denner,Dittmaier,Pozzorini

pp → V V V ZZZ:Lazopoulos,Melnikov,Petriello; WWZ:Hankele,Zeppenfeld;

VVV: Binoth,Ossola,Papadopoulos,Pittau

pp → V V + 2j VBF: Jäger,Oleari,Zeppenfeld; Bozzi

pp → tt̄Z Lazopoulos,Melnikov,Petriello

pp → tt̄ + j Dittmaier,Uwer,Weinzierl

pp → W + 3j Ellis,Melnikov,Zanderighi

Berger,Bern,Dixon,Febres Cordero,Forde,Gleisberg,Ita,Kosower,Maître

Signals

pp → H + 2j Campbell,Ellis,Zanderighi; Ciccolini,Denner,Dittmaier

pp → H + tt̄ Beenakker,Dittmaier,Krämer,Plümer,Spira,Zerwas;

Dawson,Jackson,Reina,Wackeroth
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Motivation

Scale dependence (µ = µR = µF)

pp → tt̄Z Lazopoulos,Melnikov,Petriello pp → tt̄ + j Dittmaier,Uwer,Weinzierl

LO (CTEQ6L1)
NLO (CTEQ6M)

pT,jet > 20GeV

√
s = 14TeV

pp → tt̄+jet+X
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Motivation

Shape pT -distribution

pp → tt̄Z Lazopoulos,Melnikov,Petriello pp → tt̄ + j Dittmaier,Uwer,Weinzierl
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Motivation

so far, mostly dedicated studies applying several computational
techniques;

LO calculations (including partonic phase-space generation) have
been completely automatized: HELAC, ALPGEN, MadGraph,
Amegic++, GRACE, ...;

we want to do the same with NLO calculations
Czakon,Dragiottis,Garzelli,Ossola,Pittau,Papadopoulos,Worek,AvH
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Motivation

so far, mostly dedicated studies applying several computational
techniques;

LO calculations (including partonic phase-space generation) have
been completely automatized: HELAC, ALPGEN, MadGraph,
Amegic++, GRACE, ...;

we want to do the same with NLO calculations
HELAC Czakon,Dragiottis,Garzelli,Ossola,Pittau,Papadopoulos,Worek,AvH

and we are not the only ones:
ROCKET Ellis,Giele,Kunszt,Melnikov,Zanderighi

BLACKHAT/SHERPA Berger,Bern,Dixon,Febres Cordero,Forde,Gleisberg

Ita,Kosower,Maître

one of the bottlenecks is the evaluation of the virtual, one-loop,
contribution.
Automation also by:
GOLEM Binoth,Guffanti,Guillet,Heinrich,Karg,Kauer,Reiter,Reuter

D-dim Unitarity Lazopoulos
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Ingredients for the calculations

The mathematical framework of calculations in elementary particle
physics is Quantum Field Theory. Two important ingredients in the
calculations related to LHC physics are:

Factorization

dσ( h1(p1)h2(p2) → X ) =

∑

k,l

∫

dx1dx2 f1,k(x1, µF)f2,l(x2, µF)

× dσhard( φk(x1p1)φl(x2p2) → X ; µF )

h1

h2

hard
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Ingredients for the calculations

The mathematical framework of calculations in elementary particle
physics is Quantum Field Theory. Two important ingredients in the
calculations related to LHC physics are:

Factorization

dσ( h1(p1)h2(p2) → X ) =

∑

k,l

∫

dx1dx2 f1,k(x1, µF)f2,l(x2, µF)

× dσhard( φk(x1p1)φl(x2p2) → X ; µF )

h1

h2

hard

Perturbation theory

dσhard =

dσ
(0)
hard + αdσ

(1)
hard + . . .

LO NLO+ + ...=hard
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Ingredients for the calculations

NLO cross sections

one order higher in perturbation theory: one more loop or one more
leg (squared);

IR-divergence of integral over phase space for which the extra leg is
unobserved cancels against IR-divergence of loop integral KLN.

〈O〉LO =

∫

dΦn |M(0)
n |2 OLO

n

〈O〉NLO =

∫

dΦn

[

2ℜ
(

M(0)
n M(1)

n

)

+ Cn +

∫

dΦ1 An+1

]

OLO
n

+

∫

dΦn+1

[

|M
(0)

n+1|2 ONLO
n+1 − An+1OLO

n

]

Eg. dipole subtraction Catani, Seymour ’97
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Ingredients for the calculations

Monte Carlo integration

〈O〉 =

∫

dΦn(P; {p}n) |Mn({p}n)|2 On({p}n)

In practice, PS integration has to be, and can be, done by Monte Carlo.
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Ingredients for the calculations

Monte Carlo integration

〈O〉 =

∫

dΦn(P; {p}n) |Mn({p}n)|2 On({p}n)

In practice, PS integration has to be, and can be, done by Monte Carlo.

Helicity amplitudes

〈O〉 =

∫

dΦn(P; {p}n)
∑

{λ}n

|Mn({p}n, {λ}n)|2 On({p}n)

Avoid proliferation of terms from algebra, and perform the square and
sum over helicities numerically, the latter maybe even by MC.
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Ingredients for the calculations

Monte Carlo integration

〈O〉 =

∫

dΦn(P; {p}n) |Mn({p}n)|2 On({p}n)

In practice, PS integration has to be, and can be, done by Monte Carlo.

Helicity amplitudes

〈O〉 =

∫

dΦn(P; {p}n)
∑

{λ}n

|Mn({p}n, {λ}n)|2 On({p}n)

Avoid proliferation of terms from algebra, and perform the square and
sum over helicities numerically, the latter maybe even by MC.

Color treatment

〈O〉 =

∫

dΦn(P; {p}n)
∑

{λ}n

∑

{a}n

|Mn({p}n, {λ}n, {a}n)|2 On({p}n)

Mn({p}n, {λ}n, {a}n) =
∑

perm

C({a}n) An({p}n, {λ}n)
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Ingredients for the calculations

Monte Carlo integration

〈O〉 =

∫

dΦn(P; {p}n) |Mn({p}n)|2 On({p}n)

In practice, PS integration has to be, and can be, done by Monte Carlo.

Helicity amplitudes

〈O〉 =

∫

dΦn(P; {p}n)
∑

{λ}n

|Mn({p}n, {λ}n)|2 On({p}n)

Avoid proliferation of terms from algebra, and perform the square and
sum over helicities numerically, the latter maybe even by MC.

Color treatment

〈O〉 =

∫

dΦn(P; {p}n)
∑

{λ}n

∑

{a}n

|Mn({p}n, {λ}n, {a}n)|2 On({p}n)

Perform sum over colors numerically, maybe even by MC
Draggiotis,Kleiss,Papadopoulos ’98; Caravaglios,Mangano,Moretti,Pittau ’99.
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Aim

We want to design a program to evaluate M
(1)
n ({p}n, {λ}n, {a}n)

as functions of its input as efficiently as possible.

The program should be highly automatic.

Philosophy

We are not particularly interested in algebraic/analytic expressions.
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Amplitude calculation

LSZ-formula: amplitude = connected Green function with external
propagators replaced by spinors/polarization vectors.

Dyson-Schwinger equation (=field theory): for the connected Green

functions (for scalar φ3-theory)

−i(p2 − m2)Gn+1(p, p1, . . . , pn) =

g

∫

dpbδ(p − pa − pb)

[

∑

{j}

Gk+1(pa, pj1
, . . . , pjk

) Gn−k+1(pb, pjk+1
, . . . , pjn

)

+
1

2
Gn+2(pa, pb, p1, . . . , pn)

]

Replace external propagators 1 to n by spinors/polarization vectors
→ off-shell currents.

_1
2Σ=n +

n−k

k

n Analytic solution:
sum of Feynman graphs.
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Calculation of tree-level amplitudes

Dyson-Schwinger approach: Calculate off-shell currents instead of
graphs.

i
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j i
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l

+ +
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Berends,Giele ’88; Caravaglios,Moretti ’95

Efficient: O(n!) for graphs to O(3n), n = number of exteral legs.

Straightforward to automatize.
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One-loop amplitude with OssolaPapadopoulosPittau

Identify a set of ntot denominators and write

M(1) =
∑

I⊂{0,1,2,...,ntot−1}

∫

dDimq
NI(q)

∏
i∈I Di

, Di = (q + pi)
2 − m2

i
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One-loop amplitude with OPP

Identify a set of ntot denominators and write

M(1) =
∑

I⊂{0,1,2,...,ntot−1}

∫

dDimq
NI(q)

∏
i∈I Di

, Di = (q + pi)
2 − m2

i

For Dim = 4 one can understand that

N(q)

D0D1 · · ·Dn−1

=
∑

i1,i2,i3,i4

Ni1i2i3i4
(q)

Di1
Di2

Di3
Di4

, Ni1i2i3i4
(q) polynomial
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One-loop amplitude with OPP

Identify a set of ntot denominators and write

M(1) =
∑

I⊂{0,1,2,...,ntot−1}

∫

dDimq
NI(q)

∏
i∈I Di

, Di = (q + pi)
2 − m2

i

For Dim = 4 one can understand that

N(q)

D0D1 · · ·Dn−1

=
∑

i1,i2,i3,i4

Ni1i2i3i4
(q)

Di1
Di2

Di3
Di4

, Ni1i2i3i4
(q) polynomial

Can we even write

N(q)

D0D1 · · ·Dn−1

?
=

∑

i1,i2,i3,i4

d(i1, i2, i3, i4)

Di1
Di2

Di3
Di4

+
∑

i1,i2,i3

c(i1, i2, i3)

Di1
Di2

Di3

+
∑

i1,i2

b(i1, i2)

Di1
Di2

+
∑

i1

a(i1)

Di1

+P

No.

Automatic calculation of one-loop amplitudes, A. van Hameren, 18-06-2009 – p. 20



One-loop amplitude with OPP

N(q)

D0D1 · · ·Dn−1

=
∑

i1,i2,i3,i4

d(i1, i2, i3, i4) + d̃(q; i1, i2, i3, i4)

Di1
Di2

Di3
Di4

+
∑

i1,i2,i3

c(i1, i2, i3) + c̃(q; i1, i2, i3)

Di1
Di2

Di3

+
∑

i1,i2

b(i1, i2) + b̃(q; i1, i2)

Di1
Di2

+
∑

i1

a(i1) + ã(q; i1)

Di1

+ P̃(q)

d̃, c̃, b̃, ã are polynomials in q with few coefficients (1,6,8,4);

P̃ is zero in renormalizable gauge;

terms with d̃, c̃, b̃, ã integrate to zero.
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One-loop amplitude with OPP

N(q)

D0D1 · · ·Dn−1

=
∑

i1,i2,i3,i4

d(i1, i2, i3, i4) + d̃(q; i1, i2, i3, i4)

Di1
Di2

Di3
Di4

+
∑

i1,i2,i3

c(i1, i2, i3) + c̃(q; i1, i2, i3)

Di1
Di2

Di3

+
∑

i1,i2

b(i1, i2) + b̃(q; i1, i2)

Di1
Di2

+
∑

i1

a(i1) + ã(q; i1)

Di1

+ P̃(q)

d̃, c̃, b̃, ã are polynomials in q with few coefficients (1,6,8,4);

P̃ is zero in renormalizable gauge;

terms with d̃, c̃, b̃, ã integrate to zero.

M(1) =
∑

i1,i2,i3,i4

∫
dDimq d(i1, i2, i3, i4)

Di1
Di2

Di3
Di4

+
∑

i1,i2,i3

∫
dDimq c(i1, i2, i3)

Di1
Di2

Di3

+
∑

i1,i2

∫
dDimq b(i1, i2)

Di1
Di2

+
∑

i1

∫
dDimq a(i1)

Di1

+ rational terms+O(Dim−4)
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One-loop amplitude with OPP

M(1) =
∑

i1,i2,i3,i4

∫
dDimq d(i1, i2, i3, i4)

Di1
Di2

Di3
Di4

+
∑

i1,i2,i3

∫
dDimq c(i1, i2, i3)

Di1
Di2

Di3

+
∑

i1,i2

∫
dDimq b(i1, i2)

Di1
Di2

+
∑

i1

∫
dDimq a(i1)

Di1

+ rational terms+O(Dim−4)

universal set of scalar-functions can be coded once and for all
eg. QCDloop Ellis,Zanderighi, OneLOop;

coefficients d, c, b, a can be determined in 4 dimensions.

to NLO we are not interested in O(Dim − 4).

rational terms can be written in terms of
simple universal integrals with already determined coefficients
(R1, coming from denominators for Dim 6= 4),
plus a finite renormalization, with extra Feynman rules Draggiotis,

Garzelli,Papadopoulos,Pittau (R2, coming from numerator for Dim 6= 4).
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One-loop amplitude with OPP

For all q:

N(q) =
∑

i1,i2,i3,i4

[

d(i1, i2, i3, i4) + d̃(q; i1, i2, i3, i4)
]

∏

j 6=i1,i2,i3,i4

Dj

+
∑

i1,i2,i3

[

c(i1, i2, i3) + c̃(q; i1, i2, i3)
]

∏

j 6=i1,i2,i3

Dj

+
∑

i1,i2

[

b(i1, i2) + b̃(q; i1, i2)
]

∏

j 6=i1,i2

Dj

+
∑

i

[

a(i) + ã(q; i)
]

∏

j 6=i

Dj Dj = (q + pj)
2 − m2

j
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One-loop amplitude with OPP

For all q:

N(q) =
∑

i1,i2,i3,i4

[

d(i1, i2, i3, i4) + d̃(q; i1, i2, i3, i4)
]

∏

j 6=i1,i2,i3,i4

Dj

+
∑

i1,i2,i3

[

c(i1, i2, i3) + c̃(q; i1, i2, i3)
]

∏

j 6=i1,i2,i3

Dj

+
∑

i1,i2

[

b(i1, i2) + b̃(q; i1, i2)
]

∏

j 6=i1,i2

Dj

+
∑

i

[

a(i) + ã(q; i)
]

∏

j 6=i

Dj Dj = (q + pj)
2 − m2

j

Choose q = q0 such that Di1
= Di2

= Di3
= Di4

= 0:

N(q0) =
[

d(i1, i2, i3, i4) + d̃(q0; i1, i2, i3, i4)
]

∏

j 6=i1,i2,i3,i4

Dj

There are exactly 2 such q0, enough to determine d, d̃. So by using
values of q such that denominators are zero, the equation triangularizes.
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One-loop amplitude with OPP

For all q:

N(q) =
∑

i1,i2,i3,i4

[

d(i1, i2, i3, i4) + d̃(q; i1, i2, i3, i4)
]

∏

j 6=i1,i2,i3,i4

Dj

+
∑

i1,i2,i3

[

c(i1, i2, i3) + c̃(q; i1, i2, i3)
]

∏

j 6=i1,i2,i3

Dj

+
∑

i1,i2

[

b(i1, i2) + b̃(q; i1, i2)
]

∏

j 6=i1,i2

Dj

+
∑

i

[

a(i) + ã(q; i)
]

∏

j 6=i

Dj Dj = (q + pj)
2 − m2

j

CutTools Pittau solves this system given N(q) as input.

final problem to be adressed is how to evaluate N(q).
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Evaluation of the numerator

Need to evaluate N(q) at values of q for which at least one Dj = 0;

for such q, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;
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Evaluation of the numerator

Need to evaluate N(q) at values of q for which at least one Dj = 0;

for such q, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

Suppose q is such that Di = Dj = Dk = 0:

p i

p k

p j
q+ q+

q+

Di = (q + pi)
2 − m2

i etc.;

the external momenta into the blobs, and thus
the external particles into the blobs, are
determined by pj − pi, pk − pj, pi − pk;

o.s.-currents without q already calculated;

the blobs are tree-like.
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Evaluation of the numerator

Need to evaluate N(q) at values of q for which at least one Dj = 0;

for such q, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

Suppose q is such that Di = Dj = Dk = 0:

p i

p k

p j
q+ q+

q+

Di = (q + pi)
2 − m2

i etc.;

the external momenta into the blobs, and thus
the external particles into the blobs, are
determined by pj − pi, pk − pj, pi − pk;

o.s.-currents without q already calculated;

the blobs are tree-like.

We can use the tree-level machinery to calculate the one-loop integrand.

Tr
p kq+ p iq+ p jq+p jq+
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Evaluation of the numerator

Need to evaluate N(q) at values of q for which at least one Dj = 0;

for such q, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

Suppose q is such that Di = Dj = Dk = 0:

p i

p k

p j
q+ q+

q+

Di = (q + pi)
2 − m2

i etc.;

the external momenta into the blobs, and thus
the external particles into the blobs, are
determined by pj − pi, pk − pj, pi − pk;

o.s.-currents without q already calculated;

the blobs are tree-like.

We can use the tree-level machinery to calculate the one-loop integrand.

Analogous to “unitarity-cut method” for ordered amplitudes.
Bern,Dixon,Dunbar,Kosower ’94; Bern,Dixon,Kosower ’97; Britto,Cachazo,Feng ’04
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Evaluation of the numerator

Suppose q is such that (q + pext
1 + pext

3 )2 = (q + pext
1 + pext

2 + pext
3 )2 = 0:

2

2

3

4

4

1

1

1

0

3

3

4

4

1

1

0

1+2+3

1+2+3 1+2+3

1+2+3

1+3

1+3

1+2

1+2

211 3

2
1

the two left graphs contribute,
the two on the right do not;

upper two graphs are not
equivalent, the lower two
graphs are equivalent after
loop integration;

straightforward calculation
of tree-level blobs leads to
double-counting!.

Need to return to graphs at the level of loops with external currents;

can be extracted from the list of ‘DS-vertices’, as a rooted tree;

unwanted graphs can be identified by simple algorithm;

rooted tree-structure factorizes final calculation.

Automatic calculation of one-loop amplitudes, A. van Hameren, 18-06-2009 – p. 31



Evaluation of the numerator

Alternative: go through all denominator structures explicitly, keep
tree-level blobs independent of q:

f c

1

2

4 8

16

32 1 32

2 16

84

11

22

4 8

1616

32
1

2
4

8

16

32

f c

f c f c
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Summary

NLO precision is needed for LHC;

preferably obtained with the help of automatic tools;

OPP is a good method to automatize the calculation of the one-loop
amplitude, neccesary for the virtual part in the NLO contribution;

HELAC in combination with CutTools is able so far to deal with 6-leg
one-loop amplitudes, eg pp → tt̄ bb̄, pp → W+W− bb̄, pp → bb̄bb̄,
pp → Vggg, pp → tt̄gg.
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