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Motivation

& LHC is a proton-proton collider, and the physical events to be
studied are collision events;

& The events are related to physical quantities in a statistical manner
via distributions;

& physics at LHC demands precise qualitative knowledge about
signals and backgrounds;

£ Monte Carlo programs are a preferred tools to crystallize such
knowledge;

£ multi-leg hard processes need to be included in these. Many
Interesting signals (Higgs production) include decaying heavy
particles.

& NLO corrections have to be included
# to reduce scale dependence;
» to get better description of shapes of distributions;

£ several groups of researchers are dealing with the problem of
calculating multi-leg processes at NLO.
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Motivation

Backgrounds
$ pp — VV +j Dittmaier,Kallweit,Uwer; Campbell,Ellis,Zanderighi
L pp— ttbb Bredenstein,Denner,Dittmaier,Pozzorini

$ pp — VVV zzz:Lazopoulos,Melnikov,Petriello; WWZ:Hankele,Zeppenfeld;
VVV: Binoth,Ossola,Papadopoulos,Pittau

P — V'V + 2j VBF: Jager,Oleari,Zeppenfeld; Bozzi
pp — ttZ Lazopoulos,Melnikov,Petriello

PP — t’f—l—j Dittmaier,Uwer,Weinzierl

I I I

rp — W + 3j Ellis,Melnikov,Zanderighi
Berger,Bern,Dixon,Febres Cordero,Forde,Gleisberg,lta,Kosower,Maitre

Signals
$ pp — H+ 2j Campbell,Ellis,Zanderighi; Ciccolini,Denner,Dittmaier

» PP — H + tt Beenakker,Dittmaier,Kramer,PlUmer,Spira,Zerwas;
Dawson,Jackson,Reina,Wackeroth
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Motivation

Scale dependence (UL = ugr = Ug)

Pp — ttZ Lazopoulos,Melnikov,Petriello Pp — t’f—l—j Dittmaier,Uwer,Weinzierl
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Motivation

Shape pr-distribution

pp — ttZ Lazopoulos,Melnikov,Petriello
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Motivation

& so far, mostly dedicated studies applying several computational
techniques;

& LO calculations (including partonic phase-space generation) have
been completely automatized: HELAC, ALPGEN, MadGraph,
Amegic++, GRACE, ...;

£ we want to do the same with NLO calculations
Czakon,Dragiottis,Garzelli,Ossola,Pittau,Papadopoulos,Worek,AvH
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Motivation

& so far, mostly dedicated studies applying several computational
techniques;

& LO calculations (including partonic phase-space generation) have
been completely automatized: HELAC, ALPGEN, MadGraph,
Amegic++, GRACE, ...;

£ we want to do the same with NLO calculations
HELAC czakon,Dragiottis,Garzelli,Ossola,Pittau,Papadopoulos, Worek,AvH

£ and we are not the only ones:
ROCKET Ellis,Giele,Kunszt,Melnikov,Zanderighi
BLACKHAT/SHERPA Berger,Bern,Dixon,Febres Cordero,Forde,Gleisberg
Ita,Kosower,Maitre

£ one of the bottlenecks is the evaluation of the virtual, one-loop,
contribution.
Automation also by:
GOLEM Binoth,Guffanti,Guillet,Heinrich,Karg,Kauer,Reiter,Reuter
D-dim Unitarity Lazopoulos
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Ingredients for the calculations

The mathematical framework of calculations in elementary particle

physics is Quantum Field Theory. Two important ingredients in the
calculations related to LHC physics are:

Factorization

do(hi(p1)ha(p2) = X) =

Z J dxydxz f1 1 (x1, ur)f2,1(x2, pr)

k,l

X AOpara( P (x1P1)Pr(x2p2) — X5 pr )
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Ingredients for the calculations

The mathematical framework of calculations in elementary particle

physics is Quantum Field Theory. Two important ingredients in the
calculations related to LHC physics are:

Factorization
do(hi(p1)ha(p2) = X) =
Z J dxydxz f1 1 (x1, ur)f2,1(x2, pr)
K1
X AOpara( P (x1P1)Pr(x2p2) — X5 pr )

Perturbation theory
gosSyCes

do-hard —

(0) (1)
do-hard + (Xdo-hard _I_ cee
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Ingredients for the calculations

NLO cross sections

£ one order higher in perturbation theory: one more loop or one more
leg (squared);

£ |R-divergence of integral over phase space for which the extra leg is
unobserved cancels against IR-divergence of loop integral KLN.

<O>LO _ J dd,, ‘M%O)‘Z Olﬁo

(O)N© = JdCD lzm(mgo>mg))+en+ dDq An 1| OF

J

i 0
+ J A1 [ M) 12 ONO) — Ay 1080 ]
Eg. dipole subtraction Catani, Seymour '97

Automatic calculation of one-loop amplitudes, A. van Hameren, 18-06-2009 — p. 10



Ingredients for the calculations

Monte Carlo integration

(0) = | 4®n (Ps{p)n) D (1) On (7))
In practice, PS integration has to be, and can be, done by Monte Carlo.
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Ingredients for the calculations

Monte Carlo integration

(0) = | 4®n (Ps{p)n) D (1) On (7))
In practice, PS integration has to be, and can be, done by Monte Carlo.

Helicity amplitudes

(0) = [ 40w (P (pln) 3 ¥a (P, W) On(p1a)

{Aln
Avoid proliferation of terms from algebra, and perform the square and
sum over helicities numerically, the latter maybe even by MC.
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Ingredients for the calculations

Monte Carlo integration

(0) = J 4D, (P: {phn) IV (0} ) 2 O (fp )

In practice, PS integration has to be, and can be, done by Monte Carlo.

Helicity amplitudes

(0) = [ 40w (P (pln) 3 ¥a (P, W) On(p1a)

{Aln
Avoid proliferation of terms from algebra, and perform the square and
sum over helicities numerically, the latter maybe even by MC.

Color treatment

(0) = | 4@ (Pitpl) 3 3 Dalpln, W, (aln )2 On(pln)
{Aln {aln

Mu (Pt A, 1akn) Z Clal) An({Pin, {AIn)
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Ingredients for the calculations

Monte Carlo integration

(0) = | 4®n (Ps{p)n) D (1) On (7))
In practice, PS integration has to be, and can be, done by Monte Carlo.

Helicity amplitudes

(0) = [ 40w (P (pln) 3 ¥a (P, W) On(p1a)

{Aln
Avoid proliferation of terms from algebra, and perform the square and
sum over helicities numerically, the latter maybe even by MC.

Color treatment

(0) = | 4@ (Pitpl) 3 3 Dalpln, W, (aln )2 On(pln)
{Afn {ain

Perform sum over colors numerically, maybe even by MC

Draggiotis,Kleiss,Papadopoulos '98; Caravaglios,Mangano,Moretti,Pittau '99.
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Alm

We want to design a program to evaluate Mg ) {ph, (A, {atn)
as functions of its input as efficiently as possible.

The program should be highly automatic.

Philosophy

We are not particularly interested in algebraic/analytic expressions.

Automatic calculation of one-loop amplitudes, A. van Hameren, 18-06-2009 — p. 15



Amplitude calculation

LSZ-formula: amplitude = connected Green function with external
propagators replaced by spinors/polarization vectors.

Dyson-Schwinger equation (=field theory): for the connected Green
functions (for scalar ¢3-theory)

—i(p* = m*)Grs1 (P, P1y -+, Pn) =
gjdpbé(p —Pa—Pov) [Z Git1(ParPirs -« Pi) Gnoks 1 (Po Pirsrr-- - Pin)
G)

1
—l—z Gn—I—Z(pa)pb,p] y oo >pn)]

Replace external propagators 1 to n by spinors/polarization vectors
— off-shell currents.

2. o
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Analytic solution:
sum of Feynman graphs.




Calculation of tree-level amplitudes

Dyson-Schwinger approach: Calculate off-shell currents instead of
graphs.

-
VI (R
T SR

-

Berends,Giele '88; Caravaglios, Morettl '95
£ Efficient: O(n!) for graphs to O(3™), n = number of exteral legs.

£ Straightforward to automatize.
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One-|00p amp“tUde W|th OssolaPapadopoqusPittau

|ldentify a set of n,, denominators and write

im NI(q
1C{0,1,2,...,n—1} ic1 Yi
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One-loop amplitude with OPP

|ldentify a set of n,, denominators and write

im NI(q)
I1c{0,1,2,... nix—1} iel Y1

For Dim = 4 one can understand that

Ni, 1,514 (9) polynomial

N(C]) Z Ni1izigi4(q)

DoD1---Dn_g Di,Dy,Dy,Dy,

i1 )iZ )1.'3 >i4
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One-loop amplitude with OPP

|ldentify a set of n,, denominators and write

im NI(q)
I1c{0,1,2,... nix—1} iel Y1

For Dim = 4 one can understand that

DOD] T Dn—] B .. . Di1 DizDigDizl ,

11,12,13,14

Ni, 1,514 (9) polynomial

N(C]) Z Ni1izigi4(q)

Can we even write

N(q) ?
DoDy---Dnq
d(i1>i'2>i3>i4) C(i'1>i'2>i'3) b( y L ) (l(i,])
+ + + +P
17 ,i;3,14 Di] D12D13D.4 i1%13 Di] DiZD% i%z Di D ; Di]

No.
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One-loop amplitude with OPP

DoD1---Dn_y Dy, Dy, Dy, Dy,

11,12,13, i4

c(iy,12,13) + €(q; 11,12, 1
+Z 1,12,13) + €(q;1i1,12,13)

N(q) Z d(i1>12>i3)i’4)+a(q;i1>12>i3)i’4)

Di, Di, Dy,
11,12,13
b(i1,12) + b(qg; i1, 12) a(ir) +ad(q;t1) =
" " 1 P(q)
i;z Dy, Dy, ; D1y !

& d, ¢, b,aare polynomials in g with few coefficients (1,6,8,4);
& P is zero in renormalizable gauge;

& terms with d, &, b, d integrate to zero.
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One-loop amplitude with OPP

DoD1---Dn_y Dy, Dy, Dy, Dy,

11 12 13 14

c(iy,12,13) + €(q; 11,12, 1
+Z 1,12,13) + €(q;1i1,12,13)

N(q) Z d(i1>12>i3)i’4)+a(q;i1>12>i3)i’4)

Di, Di, Di,
1] 12 13
b(i1,12) + b(qg; i1, 12) a(ir) +ad(q;t1) =
" " 1 P(q)
i;z Dy, Dy, ; D1y !

& d, ¢, b,aare polynomials in g with few coefficients (1,6,8,4);
& P is zero in renormalizable gauge;

& terms with d, &, b, d integrate to zero.

M~y d"q d(ir, 1,13, 14) y d®"q (i1, i2,13)

e . D D Dig Di4 .. . Di] DiZDifv
i11,12,13,14 11,12,13
lemq b 11 12) J' dDimq Cl(i])
_|_ J ’ + + rational terms + O (Dim —4)
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One-loop amplitude with OPP

d®™g d(i7,12,13,1 d®™g c(i7,12,1
M= Y Q(1234)_|_Z q c(ir,12,13)
. - Di, Di,Di,Dj, | = Di, Di, Di,
i11,12,13,14 11,112,113
lem b dDim .
—I—lz1 J S“ Dl] 1) —I—;J’ g:(“) + rational terms + O (Dim —4)
1 2 1

£ universal set of scalar-functions can be coded once and for all
eg. QCDloop Eliis,zanderighi, OneLOop;

& coefficients d, c, b, a can be determined in 4 dimensions.

e

to NLO we are not interested in O(Dim —4).

£ rational terms can be written in terms of

» simple universal integrals with already determined coefficients
(R1, coming from denominators for Dim # 4),

» plus a finite renormalization, with extra Feynman rules Draggiotis,
Garzelli,Papadopoulos,Pittau (R2, coming from numerator for Dim # 4).
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One-loop amplitude with OPP

For all g:
N(g)= )  [dli1 iz 1) +dlainizisia)] ][ D
i1,i2,i3,14 j#11,12,13,14
+ Z 11>12>13 ‘|’C(q 11>1Z>13)] H DJ
i1,i2,1i3 j#11,12,13
‘|‘Z (11,12) +bq11,12 HD
11,12 jF#11,12
—I—Z[a(i)—l—d(q;i)}HDj Dj = (q+p;)*—m;
i £
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One-loop amplitude with OPP

For all g:
N(g)= )  [dli1 iz 1) +dlainizisia)] ][ D
i1,12,i3,14 j#L1,12,13,14
+ > el ia, i) +e(qsh,iai3) ] ] D
19 iz ig j?’éiJ»iZ»ifv
—I—Z (11,12) +bq11,12 HD
11,12 j#£1,12
+) [ali)+dla;1) ] ] D Dj = (q+7p;)* —mj
i £

Choose q = qp such that D;, = D;, = D;, =D;, =0:

N(do) = | d(i1,12,13,14) + d(qo; 11,12, 13,14) | H D;

j#11,12,13,14

There are exactly 2 such qo, enough to determine d, d. So by using
values of g such that denominators are zero, the equation triangularizes.
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One-loop amplitude with OPP

For all g:
N(@)= )  [dlir,izi3i) +dginizis i) ] [ D
i1,i2,13,14 j#t,12,13,14
+ ) [eliniziz) +e(asiniziz) ] ] D
i1,12,13 j#11,12,13
—I—Z (11,12) +bq11,12 HD
11,12 j#£1,12
—I—Z[a(i)—l—d(q;i)}HDj D; =(q —|—pj)2—mj2
i j A1

& CutTools pittau solves this system given N(q) as input.
& final problem to be adressed is how to evaluate N(q).
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Evaluation of the numerator

Need to evaluate N(q) at values of g for which at least one D; = 0;

for such g, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

e e
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Evaluation of the numerator

e

Need to evaluate N(q) at values of g for which at least one D; = 0;

e

for such g, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

Suppose q is such that D; = D; = Dy =0:
$ Di=(q+pi)*—mfetc;

& the external momenta into the blobs, and thus
the external particles into the blobs, are

determined by p; — pi, Px — Pj» Pi — Px;
& o.s.-currents without g already calculated;

g+p; q+pJ

£ the blobs are tree-like.
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Evaluation of the numerator

e e

Need to evaluate N(q) at values of g for which at least one D; = 0;

for such g, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

Suppose q is such that D; = D; = Dy =0:

g+p;

$ Di=(q+pi)*—mfetc;

& the external momenta into the blobs, and thus
the external particles into the blobs, are

determined by p; — pi, Px — Pj» Pi — Px;
& o.s.-currents without g already calculated;

q+p;

q+pg
£ the blobs are tree-like.

We can use the tree-level machinery to calculate the one-loop integrand.

- -
a+p g+ P q+p; g+ p;
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Evaluation of the numerator

e

Need to evaluate N(q) at values of g for which at least one D; = 0;

e

for such g, N(q) only contains contributions from Feynman graphs
containing at least the zero-denominators; graphs not containing
these denominators do not contribute;

Suppose q is such that D; = D; = Dy =0:
$ Di=(q+pi)*—mfetc;

& the external momenta into the blobs, and thus
the external particles into the blobs, are

determined by p; — pi, Px — Pj» Pi — Px;
& o.s.-currents without g already calculated;

g+p; q+pJ

q+pg
£ the blobs are tree-like.

We can use the tree-level machinery to calculate the one-loop integrand.

Analogous to “unitarity-cut method” for ordered amplitudes.
Bern,Dixon,Dunbar,Kosower '94; Bern,Dixon,Kosower '97; Britto,Cachazo,Feng '04

Automatic calculation of one-loop amplitudes, A. van Hameren, 18-06-2009 — p. 30



Evaluation of the numerator

Suppose q is such that (q + p%* + p%9? = (d + p¥* + pS* + pg4)? = 0:

the two left graphs contribute,

the two on the right do not;

upper two graphs are not

equivalent, the lower two
1+2+3

1+2+3 .
graphs are equivalent after
loop integration;

& straightforward  calculation
of tree-level blobs leads to
14243 14243 double-counting!.
Need to return to graphs at the level of loops with external currents;

can be extracted from the list of ‘DS-vertices’, as a rooted tree;
unwanted graphs can be identified by simple algorithm;

L I I

rooted tree-structure factorizes final calculation.
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Evaluation of the numerator

Alternative: go through all denominator structures explicitly, keep
tree-level blobs independent of q:

/ \
\ Vs \\
ZC Q 16 2 Q C 16

\ / \ /

\ / \ /

/ fc N g: f C ™~
1 32 1 32

4
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Summary

£ NLO precision is needed for LHC,;
preferably obtained with the help of automatic tools;

e

£ OPP is a good method to automatize the calculation of the one-loop
amplitude, neccesary for the virtual part in the NLO contribution;

£ HELAC in combination with CutToo_Is IS able so far to Eleal with 6_-Ie_g
one-loop amplitudes, eg pp — ttbb, pp - WTW~bb, pp — bbbb,
pp — Vggg, pp — ttgg.
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