Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	

CP violation in the MSSM at the LHC

Jamie Tattersall

Work in collaboration with: G Moortgat-Pick, J Ellis, F Moortgat, J Smillie; (arXiv:0809.1607)

Soon to be published: P Bechtle, B Gosdzik, G Moortgat-Pick, K Rolbiecki, P Wienemann

> Institute for Particle Physics Phenomenology, Durham University

Internal Seminar, June 2009

www.ippp.dur.ac.uk

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Quality				
Outline				
•	troduction CP Violation SUSY Particle Triple Produc			
•	op Production Parton Level Including PDI			
•	quark-Gluino Process Results	Production		
4 M	omentum Re	construction		

- Method
 - Results

5 Summary

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Outline				
•	troduction CP Violation SUSY Particle Triple Product	-		
•	top Production Parton Level Including PDF			
•	quark-Gluino Process Results	Production		
	lomentum Rec Method Results	construction		

Summary

Introduction •••••	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
CP Violation				
Introduct	ion			

In the Standard Model, the only source of CP violation comes from the complex phase within the CKM matrix.

• The phase of the CKM in the Standard Model contains too little CP violation for Baryogensis. (Phys. Rept. 401, 1 (2005): Chung, Everett, Kane, King, Lykken and Wang)

• Consequently, we require new CP violating terms to explain the asymmetry we see in the universe.

MSSM (Minimal Supersymmetric Standard Model) can contain several complex parameters that can all contribute.

Introduction •••••	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
CP Violation				
Introduct	ion			

In the Standard Model, the only source of CP violation comes from the complex phase within the CKM matrix.

- The phase of the CKM in the Standard Model contains too little CP violation for Baryogensis. (Phys. Rept. 401, 1 (2005): Chung, Everett, Kane, King, Lykken and Wang)
- Consequently, we require new CP violating terms to explain the asymmetry we see in the universe.

MSSM (Minimal Supersymmetric Standard Model) can contain several complex parameters that can all contribute.

Introduction 00000000	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
CP Violation				
Our Proje	ct			

We explore methods of determining if CP violating effects in the electroweak part of the MSSM can be observed at the LHC.

- Most detailed phenomenological analyses has been based on a future LC.
- Precise determination of phases only expected at a LC.
- Crucial for future search strategy to use LHC data to learn as much as possible.
- Choose processes with the most promising discovery potential at LHC (coloured states).

Introduction 00000000	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
CP Violation				
CP Phase				

We consider the MSSM with parameters defined at the weak scale.

• In this framework the gaugino and Higgsino mass parameters and the trilinear couplings can have complex phases.

 $M_i = |M_i|e^{i\phi_i}, \qquad \mu = |\mu|e^{i\phi_\mu}, \qquad A_f = |A_f|e^{i\phi_f}$

- For the neutralino sector only the phase of M₁ and μ are important (the phase of M₂ can always be rotated away).
- Physical phases φ_i, φ_µ and φ_f generate CP odd observables (unique determination of CP phases) that can in principle be large as they are already present at tree level.

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
CP Violation				
CP Const	traints			

Certain combinations of the CP violating phases are constrained by experimental upper bounds on various EDMs (Electric Dipole Moments).

- Ignoring possible cancellations ϕ_{μ} is the most severely constrained.
 - Contributes at the one loop level to EDMs.
 - We set to zero in our analysis.
- ϕ_{M_1} also contributes at the one loop level to EDMs.
 - Accidental cancellations may allow it to become less constrained.
- The phases of the third-generation trilinear couplings, $\phi_{A_{t,b,\tau}}$ have weaker constraints.
 - Only contribute to EDMs at the two-loop level.

(arXiv:0710.5117, Kraml) ref therein.

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
SUSY Particles				
Neutraling	bs			

The supersymmetric partners of the *B*, W^{\pm} , H_1^0 , H_2^0 mix to produce mass eigenstates called neutralinos.

Mixing matrix:

$$\mathcal{M}_{N} = \begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & M_{2} & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ -m_{Z}s_{W}s_{\beta} & m_{Z}c_{W}c_{\beta} & 0 & -\mu \\ m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix}$$

 $M_1 = U(1)$ Gaugino Mass Parameter $M_2 = SU(2)$ Gaugino Mass Parameter

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
SUSY Particles				
Diagonali	sation			

The matrix is diagonalised by a unitary mixing matrix *N*:

$$m{N}^*\mathcal{M}_{m{N}}m{N}^\dagger = ext{diag}(m_{ ilde{\chi}^0_1},m_{ ilde{\chi}^0_2},m_{ ilde{\chi}^0_3},m_{ ilde{\chi}^0_4})$$

where $m_{\tilde{\chi}_{i}^{0}}$, i = 1, ..., 4 are the (non-negative) masses of the physical neutralino states.

The lightest neutralino is then decomposed as:

$$ilde{\chi}_1^0 = N_{11} ilde{B} + N_{12} ilde{W} + N_{13} ilde{H}_1 + N_{14} ilde{H}_2$$

with the bino (f_B) , wino (f_W) and Higgsino (f_H) fractions defined as:

$$f_B = |N_{11}|^2$$
, $f_W = |N_{12}|^2$, $f_{H_1} = |N_{13}|^2$, $f_{H_2} = |N_{14}|^2$.

The LSP will hence be mostly bino, wino or Higgsino according to the smallest mass parameter, M_1 , M_2 or μ .

The Stop mixing matrix is given by:

$$\mathcal{M}_{ ilde{t}} = \left(egin{array}{cc} M_{ ilde{t}_{LL}}^2 & e^{-i\phi_{ ilde{t}}}|M_{ ilde{t}_{LR}}^2| \ e^{i\phi_{ ilde{t}}}|M_{ ilde{t}_{LR}}^2| & M_{ ilde{t}_{RR}}^2 \end{array}
ight),$$

with off diagonal terms:

$$M_{\tilde{t}_{RL}}^2 = (M_{\tilde{t}_{LR}}^2)^* = m_t (A_t - \mu^* \cot \beta),$$

and phase:

$$\phi_{\tilde{t}} = \arg[\mathbf{A}_t - \boldsymbol{\mu}^* \cot \beta].$$

We note that we have $\phi_{\tilde{t}} \approx \phi_{A_t}$ for $|A_t| \gg |\mu| \cot \beta$.

Triple Product Correlations are a useful tool for studying CP odd observables.

• Construct an observable:

$\mathcal{T} = \overrightarrow{p_1} \cdot \left(\overrightarrow{p_2} \times \overrightarrow{p_3} \right)$

- Naïve time reversal operation, T_N , reverses 3-momenta $\overrightarrow{p_i} \rightarrow -\overrightarrow{p_i}$ and polarisations.
- Assuming CPT_N holds (final-state interactions and finite-width effects are negligible), T_N violation is equivalent to CP violation.
- Asymmetry will vanish under CP conservation.
- Triple product correlations as a CP indicator are a tree level effect.
 - Observables are not suppressed by loops as is the case with B-physics.

Introduction ○○○○○○○●	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary		
Triple Product Correlations						
CP odd o	bservables					

Require at least a three body decay mediated by a particle that is not a scalar (allow spin correlations).

- Observable correlations cannot occur solely from decays of a neutralino.
- Triple products originate from the Dirac Trace that produces the covariant product:

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5})\longrightarrow i\epsilon_{\mu\nu\rho\sigma}p^{\mu}_{a}p^{\nu}_{b}p^{\rho}_{c}p^{\sigma}_{d}.$$

• The covariant product can be expanded in terms of explicit 4-momentum components:

$$E_a \overrightarrow{p_b} \cdot (\overrightarrow{p_c} \times \overrightarrow{p_d}) + \dots$$

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Outline				
• •	troduction CP Violation SUSY Particles Triple Product (
•	op Production Parton Level Including PDFs			
•	quark-Gluino P Process Results	roduction		
•	omentum Reco Method Results	onstruction		
5 St	ummary			

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Parton Level				
Process				

Process studied:

g $\begin{array}{rcl} g \ g \ \Longrightarrow \ \tilde{t} \ \tilde{\bar{t}}, \\ \tilde{t} \ \Longrightarrow \ t \ \tilde{\chi}_2^0, \\ \tilde{\chi}_2^0 \ \Longrightarrow \ \tilde{\chi}_1^0 \ l^+ \ l^-. \end{array}$ g g g For this channel to work all scenarios have to satisfy:

$$M_{\tilde{\chi}_2^0} < M_{\tilde{\boldsymbol{e}}_{L,R}}, \quad M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0} < M_Z.$$

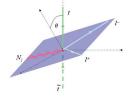
Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Parton Level				
Realising	CP asymme	trv		

Process allows three different triple products to be studied:

$$\mathcal{T}_t = \vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) , \quad \mathcal{T}_b = \vec{p}_b \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) , \quad \mathcal{T}_{tb} = \vec{p}_t \cdot (\vec{p}_b \times \vec{p}_{\ell^\pm}).$$

- T_t only sensitive to phase, ϕ_{M_1} .
- T_b and T_{tb} sensitive to both ϕ_{M_1} and ϕ_{A_t} .
- Charge identification is required as CP conjugate process has an asymmetry of the opposite sign.
 - For *T_t* and *T_{tb}* we require opposite decay chain i.d (*t̃* → *x̃*⁺*b* dominant).
 - For T_b , leptonic decay of W is an alternative.

(Eur.Phys.J.C60:633-651,2009, J. Ellis, F. Moortgat, G. Moortgat-Pick, J.M. Smillie, J. Tattersall)


Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Parton Level				

Realising CP asymmetry

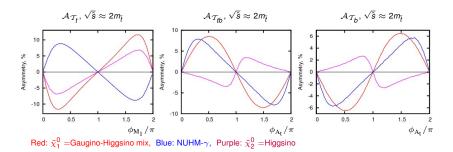
I choose an example triple product:

$$\mathcal{T}_t = \overrightarrow{p_t} \cdot (\overrightarrow{p_{l^+}} \times \overrightarrow{p_{l^-}})$$

Momentum conservation forces I^+ , I^- and $\tilde{\chi}^0_1$ to define a plane in the rest frame of $\tilde{\chi}^0_2$.

- A non-zero expectation value of *T*, implies a non-zero average angle between the plane and the z-axis (*p*_t).
- Define asymmetry parameter:

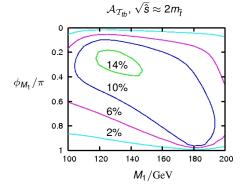
$$\eta = \frac{N_+ - N_-}{N_+ + N_-} = \frac{N_+ - N_-}{N_{total}}$$


where:

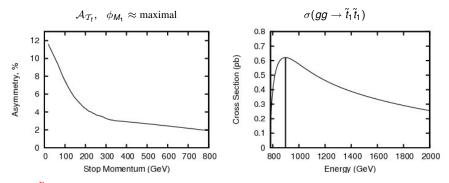
$$N_{+} = \int_{0}^{1} rac{d\Gamma}{d\cos\theta} d\cos\theta, \quad N_{-} = \int_{-1}^{0} rac{d\Gamma}{d\cos\theta} d\cos\theta,$$

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
	0000000			

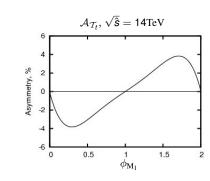
Parton Level


Parton Level Asymmetry

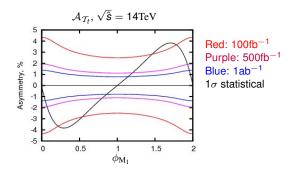
- All asymmetries in %.
- Asymmetries at the parton level can be as large as 10%.
- Various scenarios with three body decay of χ˜⁰₂ show similar results.
- CP odd observable


Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Parton Level				

Parton Level Asymmetry


- As an example we vary *M*₁ between over the range allowed by our mass constraints.
- Similar values for asymmetry found over whole range.
- Common trilinear couplings can also be varied and asymmetries are again found to be similar.

- \tilde{t}_1 are boosted due to production process and PDFs.
- Asymmetry is maximal in rest frame of decaying particle.
- Dilution of asymmetry due to t flipping orientation in comparison to plane defined by l⁺l⁻.


Introduction 000000000	Stop Production ○○○○○●○	Squark-Gluino Production	Momentum Reconstruction	Summary
Including PDFs				
Hadronic	Level Asym	netry		

- After including production process and folding in PDF's, asymmetry drops to $\approx 4\%$ maximum.
- Similar for each triple product.
- All results generated analytically, cross-checked with Herwig++.

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Including PDFs				

Hadronic Level Asymmetry

- Cross section of production \approx 1.5pb (Analytical, Herwig++, Madgraph).
- $BR(\tilde{t}_1 \rightarrow \tilde{\chi}_2^0 t) \approx 10\%$, $BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^-) \approx 4\%$.
- If cuts, detector effects.... etc are included, discovery potential looks very difficult even if large phases are present.

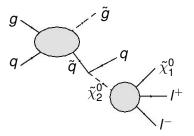
Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Outline				
•	troduction CP Violation SUSY Particle Triple Product			
•	op Production Parton Level Including PDF			
•	quark-Gluino F Process Results	Production		
•	omentum Rec Method Results	onstruction		

Summary

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Process				
Process				

Process studied:

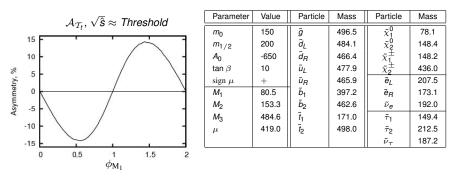
$$\begin{array}{rcl} q \; g \; \implies \; \tilde{q}_L \; \tilde{g}, \\ \tilde{q}_L \; \implies \; \tilde{\chi}_2^0 \; q, \\ \tilde{\chi}_2^0 \; \implies \; \tilde{\chi}_1^0 \; l^+ \; l^- \end{array}$$


- Process takes advantage of one of the dominant SUSY production channel at the LHC.
 - Kinematic constraints:

$$M_{ ilde{\chi}^0_2} < M_{ ilde{e}_{L,R}}, \quad M_{ ilde{\chi}^0_2} - M_{ ilde{\chi}^0_1} < M_Z$$

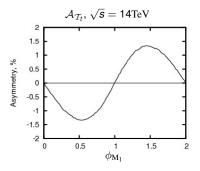
• Triple product to be reconstructed (sensitive to ϕ_{M_1}):

$$\mathcal{T} = ec{p}_{q} \cdot (ec{p}_{\ell^+} imes ec{p}_{\ell^-}).$$


• Charge identification not required as \tilde{q} dominates over \tilde{q} .

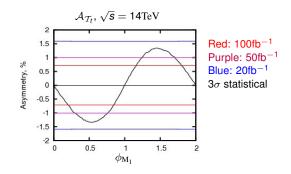
Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
		0000		

Results


Partonic Level Asymmetry

- Asymmetry can be as large as 15%.
- mSugra scenario chosen with favourable features.
 - Large branching ratios for our decay chain.
 - Coupling character of $\tilde{\chi}^0_2$ and $\tilde{\chi}^0_1$ here produce large asymmetry.

Introduction 000000000	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Results				


Hadronic Level Asymmetry

- Asymmetry drops significantly at the LHC for three reasons.
 - *q* are boosted due to production process and PDFs.
 - \tilde{q}^* are present in the sample.
 - τ 's that decay leptonically are indistinguishable.
- Asymmetry drops to \sim 1.5% maximum.

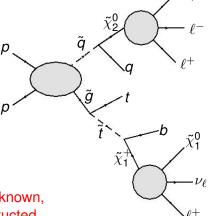
Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Results				

Hadronic Level Asymmetry

- Cross section of production \approx 17pb.
- $BR(\tilde{q}_L \rightarrow \tilde{\chi}_2^0 q) \approx 30\%$, $BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^-) \approx 10\%$
- Hints could be seen at the LHC.

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Outline				
•••	troduction CP Violation SUSY Particles Triple Product			
•	op Production Parton Level Including PDFs			
•	quark-Gluino F Process Results	Production		
•	omentum Reco Method Results	onstruction		

5 Summary

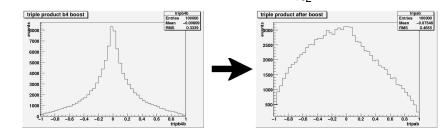

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction ●০০০	Summary
Method				
Momentu	im Reconstru	iction		

- Main problem with measuring asymmetries at the LHC is the dilution due to boosted frames.
- We reconstruct the frame of the decaying particle and the full asymmetry is restored.
- Reconstruct LSP momentum using the set of invariant equations.
- Also investigate the effect of boosting into the frames of the visible decay products.

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction ○●○○	Summary
Method				
Process				

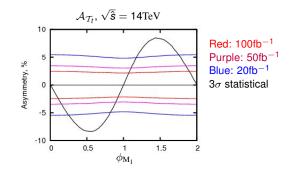
Mass conditions:

$$\begin{split} m_{\tilde{q}}^2 &= (P_{\tilde{\chi}_2^0} + P_q)^2, \\ m_{\tilde{\chi}_2^0}^2 &= (P_{\tilde{\chi}_1^0} + P_{\ell^+} + P_{\ell^-})^2, \\ m_{\tilde{g}}^2 &= (P_{\tilde{t}} + P_t)^2, \\ m_{\tilde{t}}^2 &= (P_{\tilde{\chi}_1^+} + P_b)^2, \\ m_{\tilde{\chi}_1^+}^2 &= (P_{\tilde{\chi}_1^0} + P_{\ell^+} + P_{\nu_\ell})^2, \\ \vec{p}_{miss}^T &= \vec{p}_{\tilde{\chi}_{1A}^0}^T + \vec{p}_{\tilde{\chi}_{1B}^0}^T + \vec{p}_{\nu_\ell}^T. \end{split}$$



 $\tilde{\chi}_1^0$

- Assuming particle masses are known, momenta of $\tilde{\chi}_0^1$ can be reconstructed.
- By boosting into rest frame of decaying *q̃*, parton level asymmetry is recovered.


 $\tilde{\chi}_{2}^{0}$ Rest Frame

- Using events generated by Herwig++ effect of boost can clearly be seen.
- Angle between ℓ^+, ℓ^- plane and q is enhanced.
 - Asymmetry becomes more resolvable.

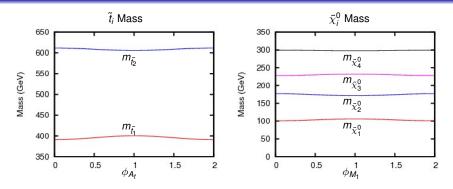
Lab Frame

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Results				
Results				

- Asymmetry returns to near parton level magnitude.
 - Still q
 ^{*} in sample.
 - Complications with multiple solutions.
- Substantially increases statistical significance of any result.

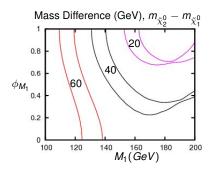
Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Outline				
•	t roduction CP Violation SUSY Particl Triple Produc	es t Correlations		
•	op Productic Parton Level Including PD			
•	juark-Gluino Process Results	Production		
•	omentum Re Method Results	construction		

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Summary				


- New forms of CP violation are required to explain asymmetry we see in the universe.
- MSSM can contain new phases that lead to CP violation.
- Initial study of \tilde{t} production would require large luminosity.
- New study using $\tilde{q}\tilde{g}$ much more hopeful.
- Data from ILC will be crucial to constrain parameter space of MSSM.
- Using momentum reconstruction further improves the situation.

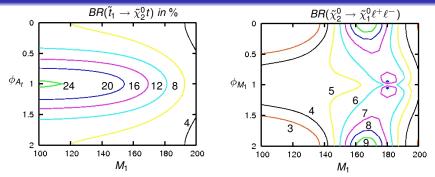
Introduction 000000000	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Extra Slid	les			

Extra slides on other possible MSSM CP observables


Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary

Variation of Mass with CP Phase

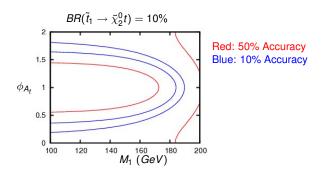
- Masses of both \tilde{t} and $\tilde{\chi}_{i}^{0}$ vary with phase.
- CP even quantity.
- An absolute mass measurement at the LHC will not be accurate enough to constrain the phase.


Introduction 000000000	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary
Mass Diff	erence			

- Assumed a 1% experimental error.
- Assumed a 5% error in determination of M_2 .
- A measurement of the mass difference $m_{\tilde{\chi}^0_2} m_{\tilde{\chi}^0_1}$ looks potentially more promising if the mass difference happens to be small (<40 GeV).

Introduction 000000000	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary

Branching Ratios



• Both $BR(\tilde{t}_1 \to \tilde{\chi}_2^0 t)$ and $BR(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-)$ vary with phase.

- Both couplings and phase space factors are responsible for behaviour.
- CP even quantity.
- Highly scenario dependent.

Introduction	Stop Production	Squark-Gluino Production	Momentum Reconstruction	Summary

Measurement of Branching Ratios

- Parameter space allowed when the experimental accuracy of the branching ratio measurement is 50%, Δ₁ (LHC) or 10%, Δ₂ (LC).
- Analysis assumes all other scenario parameters are known
- Measurement only looks likely with a future Linear Collider.