Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ verte>

Numerical Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Precise Predictions for Higgs Production in Neutralino Decays

Alison Fowler

Supervisor: G. Weiglein

IPPP Seminar, Friday 19th June

www.ippp.dur.ac.uk

CP-violating	MSSM

Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex 000000

Numerical Results

Summary

Outline

CP-violating MSSM

- Higgs sector in the CP-violating MSSM
- Higgs production in CPX scenario

2 Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{i}^{0} h_{k}$ vertex

- Improved Born Approximation
- Renormalisation
- Full 1-loop vertex correction

3 Numerical Results

- $\tilde{\chi}_2^{\bar{0}}$ Branching Ratio

The CP-violating MSSM

- Every SM particle gets supersymmetric partner
- 2 Higgs doublets \Rightarrow 5 physical Higgs bosons
- Rich mixing structure:
 - $\tilde{f}_{L,R} \max \Rightarrow \text{sfermions } \tilde{f}_{1,2}$
 - $\tilde{\mathbf{h}}_{u,d}^{\pm}, \tilde{\mathbf{W}}^{\pm}$ mix \Rightarrow charginos $\tilde{\chi}_{1,2}^{\pm}$
 - $\widetilde{h}^0_u, \widetilde{h}^0_d, \widetilde{B}, \widetilde{W}^3$ mix \Rightarrow neutralinos $\tilde{\chi}^0_{1,2,3,4}$
- New source of CP-violation: A_f, μ, M_{1,2,3}
- May help explain matter-antimatter asymmetry of the universe

CP-violating MSSM o●oooo Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex 000000

Numerical Results

A D F A 同 F A E F A E F A Q A

The Higgs Sector

Higgs sector at tree-level:

 Higgs sector is CP-conserving: h,H (CP-even), A (CP-odd), H⁺,H⁻

Beyond tree-level: Loop corrections can be large

- CP-violating phases $\phi_{A_{t,b,\tau}}$, ϕ_{μ} , $\phi_{M_{1,3}}$ enter via loops
- Mixing between h,H,A \rightarrow h_1 , h_2 , h_3

$$\overbrace{h,H,A}^{\tilde{t}_1,\tilde{t}_2}$$

$$\overbrace{h,H,A}^{t,\tilde{t}_1,\tilde{t}_2}$$

$$\overbrace{h,H,A}^{t,\tilde{t}_1,\tilde{t}_2}$$

$$\overbrace{h,H,A}^{t,\tilde{t}_1,\tilde{t}_2}$$

- Higgs sector is CP-violating at 1-loop level
- CP-violating mixing $\propto \text{Im}(A_t \mu)/M_{\text{SUSY}}^2$

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex 00000

Numerical Results

CPX Scenario at LEP

Extreme CP violating scenario with large h-H-A mixing.

μ	M _{SUSY}	<i>M</i> ₃	$ A_{t,b,\tau} $	ϕ_{M_3}	$\phi_{\mathcal{A}_{\mathrm{t,b},\tau}}$	Carana at al han ab/20000101
2000	500	1000	900 GeV	π/ 2	<i>π</i> /2	[Carena et al. nep-ph/0009212]]

[LEP Higgs Working Group '06]

- h₁ mostly CP-odd A
- LEP: $e^+e^- \rightarrow Z^* \rightarrow Zh, hA$
- Suppression of ZZh₁ coupling
- Suppression of h₁ production
- h₂ may be within LEP reach
- But $h_2 \rightarrow h_1 h_1$: difficult final state
- Light Higgs not excluded!
- "CPX hole" at $t_{\beta} \approx 7$, $M_{h_1} \approx 40 \text{GeV}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Genuine vertex corrections to $h_2 \rightarrow h_1 h_1$ very important

Higher Order Corrections to $\tilde{\chi}_{j}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

(ロ) (同) (三) (三) (三) (三) (○) (○)

Summary

CPX scenario at LHC

[M. Schumacher, ATLAS '07]

- CPX holes not covered by conventional channels at LHC
- Need to consider other production methods
- Perhaps involve SUSY particles themselves See eg. H⁺ → W⁺h₁: [Ghosh, Godbole and Roy hep-ph/0412193] and tt̃h₁: [Bandyopadhyay, Datta et al. arXiv:0710.3016]

Higgs in SUSY cascade decays

SUSY cascade decays: another source of light Higgs

 $pp \rightarrow \widetilde{g}\widetilde{g}, \widetilde{q}\widetilde{q}, \widetilde{g}\widetilde{q} \rightarrow \widetilde{\chi}_{i}^{0}, \widetilde{\chi}_{i}^{+} + X \rightarrow \widetilde{\chi}_{j}^{0}, \widetilde{\chi}_{j}^{+} + X + h, H, A, H^{\pm}$

- May complement Higgs searches in conventional channels
- Also a probe to determine parameters of EWSB
- Applicable to both CP-conserving and CP-violating MSSM
- Recent interest in SUSY cascade Higgs production:
 - CP-conserving MSSM [Datta and Djouadi et al. hep-ph/0303095]
 - Experimental analyses of $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 h$ [CMS TDR '07]
 - MSSM with non-universal gaugino masses [Banyopadhyay et al. arXiv:0806.2367, Huitu et al. arXiv:0808.3094]
 - NMSSM with light Higgs [Djouadi '08, Cheung and Hou arXiv:0809.1122]

CP-violating	MSSM
000000	

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

CPX Cascades

CPX with
$$M_2 = 200$$
 GeV, tan $\beta = 5.5$:

N	lasses	in	Ge	/:

$M_{\widetilde{\chi}^0_{3,4},\widetilde{\chi}^+_2}$	M _{g̃}	$M_{\widetilde{u},\widetilde{d},\widetilde{c},\widetilde{s}}$	$M_{\tilde{t}_{1,2}}$	$M_{\widetilde{b}_{1,2}}$	$M_{\widetilde{\chi}^0_2,\widetilde{\chi}^+_1}$	$M_{\widetilde{\chi}_1^0}$
\simeq 2000	1000	\simeq 500	332,667	471,531	198.5	95.1

CP-violating	MSSM
000000	

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

Summary

CPX Cascades

CPX with $M_2 = 200$ GeV, tan $\beta = 5.5$:

N	lasses	in	Ge	/:

$M_{\widetilde{\chi}^0_{3,4},\widetilde{\chi}^+_2}$	M _{g̃}	$M_{\widetilde{u},\widetilde{d},\widetilde{c},\widetilde{s}}$	$M_{\tilde{t}_{1,2}}$	$M_{\widetilde{b}_{1,2}}$	$M_{\widetilde{\chi}^0_2,\widetilde{\chi}^+_1}$	$M_{\widetilde{\chi}_1^0}$
\simeq 2000	1000	\simeq 500	332,667	471,531	198.5	95.1

CP-violating	MSSM
000000	

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

Summary

CPX Cascades

CPX with $M_2 = 200$ GeV, tan $\beta = 5.5$:

N	lasses	in	Ge	/:

$M_{\widetilde{\chi}^0_{3,4},\widetilde{\chi}^+_2}$	M _{g̃}	$M_{\widetilde{u},\widetilde{d},\widetilde{c},\widetilde{s}}$	$M_{\tilde{t}_{1,2}}$	$M_{\widetilde{b}_{1,2}}$	$M_{\widetilde{\chi}^0_2,\widetilde{\chi}^+_1}$	$M_{\widetilde{\chi}_1^0}$
\simeq 2000	1000	\simeq 500	332,667	471,531	198.5	95.1

CP-violating	MSSM
000000	

Higher Order Corrections to $\tilde{\chi}_{j}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

(日)

Summary

CPX Cascades

CPX with $M_2 = 200$ GeV, tan $\beta = 5.5$:

N	lasses	in	Ge	√:

$M_{\widetilde{\chi}^0_{3,4},\widetilde{\chi}^+_2}$	M _{g̃}	$M_{\widetilde{u},\widetilde{d},\widetilde{c},\widetilde{s}}$	$M_{\tilde{t}_{1,2}}$	$M_{\widetilde{b}_{1,2}}$	$M_{\widetilde{\chi}^0_2,\widetilde{\chi}^+_1}$	$M_{\widetilde{\chi}_1^0}$
\simeq 2000	1000	\simeq 500	332,667	471,531	198.5	95.1

Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex

Numerical Results

Summary

$\tilde{\chi}_i^0 \tilde{\chi}_i^0 h_k$ vertex: Why study?

- Higgs propagator corrections already known to be large
- Vertex corrections to $\Gamma(h_2 \rightarrow h_1 h_1)$ were $\mathcal{O}(400\%)$ for CPX

[Williams and Weiglein arXiv:0710.5320]

• Large μ , A_t may also enhance loop contributions

Already available:

- 1-loop (s)fermion corrections to $h, H, A \rightarrow \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}$ in rMSSM [Eberl et al. hep-ph/0111303, Ren-You et al. hep-ph/0201132]
- 1-loop effective Lagrangian for $h_k \to \tilde{\chi}^0_i \tilde{\chi}^0_j$ in cMSSM [Ibrahim arXiv:0803.4134]
- 2-loop Higgs propagator corrections in FeynHiggs at $\mathcal{O}(\alpha_{s}\alpha_{t})$ in cMSSM [Heinemeyer et al. arXiv:0705.0746]

Loop Corrections in the Higgs Sector

Step 1: Improved Born Approximation incorporating existing 2-loop Higgs propagator corrections

- Finite wavefunction normalisation factors Z_{ij} include mixing between h, H, A (i.e. h-H-A self-energy diagrams).
- We evaluate M_{h_i} , Z_{ij} using FeynHiggs2.6.5, which contains the leading 2-loop corrections.

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex $\circ \circ \circ \circ \circ$

Numerical Results

Summary

Genuine vertex corrections in Higgs/Neutralino sectors

Step 2: Full 1-loop vertex correction

We evaluate triangle and self-energy diagrams: eg.

• We implement our own renormalisation scheme into FeynArts and also use FormCalc/LoopTools

Renormalisation in the Higgs Sector

We implement the same scheme used in FeynHiggs:

See [Frank et al. hep-ph/0611326] and [Williams and Weiglein arXiv:0710.5320] for details

- Charged Higgs boson mass, $M_{H^{\pm}}$, is fixed on-shell
- M_{h_1} , M_{h_2} , M_{h_3} derived from poles of loop-corrected 3x3 propagator matrix $\Delta_{hHA}(p^2)$
- $\overline{\mathrm{DR}}$ renormalisation for tan β
- $\overline{\text{DR}}$ renormalisation for fields: $\delta Z_{\mathcal{H}_{1,2}}^{\overline{\text{DR}}}$
- To obtain correct on-shell properties of neutral Higgs bosons, we then introduce finite normalisation factors Z_{ij}
- Convenient for including CP-violating mixing effects beyond one-loop order

Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex 000000

Numerical Results

Renormalisation in the Neutralino/Chargino Sector

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$
$$Y = \begin{pmatrix} M_1 & 0 & -M_Z c_\beta s_W & M_Z s_\beta s_W \\ 0 & M_2 & M_Z c_\beta c_W & -M_Z s_\beta c_W \\ -M_Z c_\beta s_W & M_Z c_\beta c_W & 0 & -\mu \\ M_Z s_\beta s_W & -M_Z s_\beta c_W & -\mu & 0 \end{pmatrix}$$

- We renormalise the 3 independent parameters: M_1 , M_2 , μ
- We fix masses of $\tilde{\chi}_{1,2}^0$, $\tilde{\chi}_2^+$ on-shell $\Rightarrow \delta M_1$, δM_2 , $\delta \mu$
- Other 3 masses of $\tilde{\chi}_{3,4}^0$, $\tilde{\chi}_1^+$ receive loop corrections
- Convenient for $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h_k$ with $M_1 < M_2 \ll \mu$
- For other processes and parameters we found different choices can be more convenient and numerically stable.

CP-violating MSSM Higher Order Correc

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Renormalisation in the Neutralino/Chargino Sector

- We fix the field renormalisation constants, δŽ, by requiring correct on-shell properties of 2-pt vertex functions and correct normalisation of the S-matrix¹
- CP-violation makes this non-trivial rel. to SM or real MSSM
- Complex phases may combine with absorptive parts of loop integrals to contribute to real parts of amplitudes at 1-loop level
- Investigated scheme where field renormalisation constants for incoming particles and outgoing antiparticles do not coincide²
- Correct structure of on-shell propagator \Rightarrow renormalisation conditions for Im $\delta \tilde{Z}$, $\delta \phi_{M_1}$, $\delta \phi_{M_2}$, $\delta \phi_{\mu}$
- Other possibility: DR renormalisation of phases (in progress)

²See [Espriu et al. hep-ph/0204085] and [Denner et al. hep-ph/0402130] for discussion for CKM matrix

¹ See [Fritzsche and Hollik hep/ph-0203159] for chargino/neutralino field renormalization in real MSSM

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

Step 3: We combine our complete 1-loop result with existing 2-loop Higgs-propagator corrections from the literature:

The most precise prediction for the process $\tilde{\chi}_i^0 \to \tilde{\chi}_i^0 h_k$.

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ verte:

Numerical Results

・ロット (雪) (日) (日)

э

Summary

$\tilde{\chi}^{\rm 0}_{\rm 2}$ Decay Width

CPX:
$$\tan \beta = 5.5, M_2 = 200 \, \text{GeV}$$

Higher Order Corrections to $\tilde{\chi}_{i}^{0}\tilde{\chi}_{j}^{0}h_{k}$ vertex 000000

Numerical Results

Summary

Variation with μ and $Arg(A_t)$

 $\Gamma(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h_1)$: CPX with $M_{h_1} = 40, M_2 = 200$ GeV, tan $\beta = 5.5$

• Large μ , $|A_t|$ in CPX scenario enhance vertex corrections

 Correction largest for φ_{At} = π, where h₁ is mostly h (experimentally excluded at 40 GeV)

Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex 00000

Numerical Results

Variation with ϕ_{M_1} (*Preliminary Results:*)

- ϕ_{M_1} plays large role for neutralino sector at Born level
- Can also enhance effect of vertex corrections
- Asymmetry due to CP-violating h-H-A mixing

・ロト・西ト・ 山田・ 山田・

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

Summary

CPX scenario: $\tilde{\chi}^0_2$ Branching Ratio

- Other decays $(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \bar{f} f, \tilde{\chi}_1^0 Z, \tilde{f}_{1,2} f)$ only important for $m_{\tilde{\chi}_2^0} \gtrsim m_{\tilde{f}}$
- Improved Born approx. works well for this branching ratio

CP-violating MSSM	Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex 000000	Numerical Results	Summary
CPX Cascades			

Eg. CPX hole with $\tan \beta = 5.5$, $M_2 = 200$, $M_{h_1} = 40$ GeV:

Rough estimate:

• Produce \tilde{g} ($\sigma_{\tilde{g}\sim 1\text{TeV}} \sim 1\text{pb}$) \Rightarrow 13% cascade decay to h_1 Can one dig such a signal out of SM/SUSY backgrounds? c.f. [CMS TDR '07] Reconstruction of mass of 115 GeV Higgs boson (mSUGRA) in similar cascade by requiring multiple hard jets, 2 b-tagged jets and missing transverse energy.

Higher Order Corrections to $\tilde{\chi}_{j}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

Summary

CP-conserving case: Small α_{eff} scenario

- $M_{H^{\pm}}$ =220 GeV, tan β =10
- μ=2 TeV, X_t=-1.1 TeV
- Large vertex corrections also found in CP-conserving scenarios with large μ and A_t

(日) (日) (日) (日) (日) (日) (日)

Numerical Results

CP-conserving case: Light $\tilde{\chi}_1^0$ scenario

 M_1 with $m_{\tilde{\chi}_1^0} \approx 0$ (not experimentally excluded) [Dreiner et al. 0901.3485] M_2 =400, μ =600, M_A =500, M_{SUSY} =500 GeV, (A_f =1 TeV, tan β =20)

Large vertex corrections for both \$\tilde{\chi}_2^0 → \tilde{\chi}_1^0 h\$ and \$\tilde{\chi}_2^0 → \$\tilde{\chi}_1^0 Z\$ can have \$\mathcal{O}\$(10%) effect if BRs are of similar magnitude.

CP-violating MSSM	Higher Order Corrections to $\tilde{\chi}^0_i \tilde{\chi}^0_j h_k$ vertex 000000	Numerical Results	Summary
Summary			

- Complete 1-loop result for \$\tilde{\chi}_i^0 → \$\tilde{\chi}_j^0 h_k\$ was derived, supplemented by 2-loop propagator-type corrections: Most precise prediction for this process in complex MSSM.
- Genuine vertex corrections to decay width found to be as large as 50% in some scenarios.
- Effect on branching ratio can be large if \$\tilde{\chi}_i^0 → \$\tilde{\chi}_j^0 h_k\$ is competing with other decay modes, \$\tilde{\chi}_i^0 → \$\tilde{\chi}_i^0 Z\$, \$\tilde{f}_{1,2}f\$.
- These results have particular relevance to CP-violating scenarios, where h₁ may be as light as 30 – 40 GeV.
- Such a light h_1 may be significantly produced via $\tilde{\chi}^0$ decay.

CP-violating MSSM	Higher Order Corrections to ${ ilde \chi}^0_i { ilde \chi}^0_j h_k$ vertex 000000	Numerical Results	Summary

Outlook

- Results will be provided as a public tool so that experimental studies can be carried out for *χ̃⁰_i* → *χ̃⁰_ih_k*.
- Effects of CP-violating phases from the chargino-neutralino sector will be studied in more detail.
- Different renormalisation schemes for the complex MSSM will be further investigated and compared.
- These results may also be applied to Higgs searches and bounds which use h_i → \$\tilde{\chi}_{j}^{0}\$\tilde{\chi}_{k}^{0}\$, \$\tilde{\chi}_{j}^{+}\$\tilde{\chi}_{k}^{-}\$ and also to dark matter annihilation.

Higher Order Corrections to $\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} h_{k}$ vertex

Numerical Results

Summary

Back-up slide

Variation with ϕ_{M_1} (*Preliminary Results*) Why asymmetry about $\phi_{M_1} = 0$?

When a linear combination weighted by Z matrix elements of h, H, A is taken, an asymmetric variation wrt ϕ_{M_1} for h_1 is found already at the Improved Born level.