



## $B \rightarrow K^*$ Decays: SM and Beyond

Aoife Bharucha with W. Altmannshofer, Patricia Ball, A.J. Buras, D. Straub and M. Wick (arXiv:0811.1214 [hep-ph]) also with William Reece and Thorsten Feldmann

IPPP

Internal Seminar, 26th June 2009

### Soon Launching Expedition to 14TeV



### Soon Launching Expedition to 14TeV



# Some Structure

- ${\: \bullet \:}$  Tools for calculating  $B \to K^*$  Decays
- Theoretical Predictions
- Prospects at LHCb

# A B Physicists ToolBox

#### WILSON COEFFICIENTS

#### Contain short distance effects, and possibly NP HADRONIC MATRIX ELEMENTS

 $\langle B|J|K^*\rangle$  described by Form Factors

HARD SPECTACTOR EFFECTS- For  $B \rightarrow K^* \mu^+ \mu^-$  QCD factorization/ SCET/ HQET...



Matrix elements responsible for  $B \rightarrow K^* l^+ l^- / \nu \bar{\nu}$  can be expressed as:

#### 8 Full form factors (FF's)

$$\langle K^{*}(p)|\bar{s}\gamma_{\mu}\gamma_{L}b|\bar{B}(p_{B})\rangle = -ie_{\mu}^{*}(m_{B}+m_{K}^{*})\mathbf{A}_{1}(q^{2}) + i(p_{B}+p)_{\mu}e^{*}\cdot q\frac{\mathbf{A}_{2}(q^{2})}{m_{B}+m_{K}^{*}}$$

$$+ iq_{\mu}(e^{*}\cdot q)\frac{2m_{K^{*}}}{q^{2}}\left(\mathbf{A}_{3}(q^{2}) - \mathbf{A}_{0}(q^{2})\right) + \epsilon_{\mu\nu\rho\sigma}e^{*\nu}p_{B}^{\rho}p^{\sigma}\frac{2\mathbf{V}(q^{2})}{m_{B}+m_{K}^{*}}$$

$$\langle K^{*}(p)|\bar{s}\sigma_{\mu\nu}q^{\nu}\gamma_{L}b|\bar{B}(p_{B})\rangle = i\epsilon_{\mu\nu\rho\sigma}e^{*\nu}p_{B}^{\rho}p^{\sigma}2\mathbf{T}_{1}(q^{2}) + \mathbf{T}_{2}(q^{2})e_{\mu}^{*}(m_{B}^{2}-m_{K^{*}}^{2})$$

$$- \mathbf{T}_{2}(q^{2})(e^{*}\cdot q)\left(p_{B}+p\right)_{\mu} + \mathbf{T}_{3}(q^{2})(e^{*}\cdot q)\left\{q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}\left(p_{B}+p\right)_{\mu}\right\}$$

Aoife Bharucha (IPPP)

#### **Theoretical Prections:**

- Lattice: High  $q^2$ , Unstable particles eg.  $K^*$  difficult
- Light Cone Sum Rules: Low  $q^2$

#### **Range of Form Factors:**

- Kinematic Range:  $0 \le q^2 \le 20 \text{GeV}^2$
- QCDF Range for  $B \to K^* \mu^+ \mu^-$ :  $1 \le q^2 \le 6 \text{GeV}^2$

Extrapolation to high  $q^2$ ?

### Form Factor Generalities

• Cut at 
$$t_+$$
,  $t_\pm = (m_H \pm m_L)^{1/2}$   $|\mathsf{F}(\mathsf{t})|$ 

- Series of poles at  $q^2 > t_+$
- May be poles at  $m_R$  in  $t_- < q^2 < t_+{}^{\rm a}$

<sup>a</sup>W. A. Bardeen, E. J. Eichten and C. T. Hill, arXiv:hep-ph/0305049

• 
$$F(q^2) = \frac{F(0)/(1-\alpha)}{1-\frac{q^2}{m_R^2}} + \frac{1}{\pi} \int_{t_+}^{\infty} dt \frac{\mathrm{Im}F_+(t)}{t-q^2-i\epsilon}$$
  
•  $F(q^2) = \frac{F(0)/(1-\alpha)}{1-\frac{q^2}{m_R^2}} + \sum_{k=1}^{N} \frac{\rho_k}{1-\frac{1}{\gamma_k}\frac{q^2}{m_R^2}}$ 

Parameterizations differ in approach:

- Make a heuristic, pragmatic ansatz
- Based on first-principles eg. unitarity, analyticity

Aoife Bharucha (IPPP)

#### Pole Type Parameterisations

BK (Becirevic-Kaidalov<sup>1</sup>)

$$f(q^2) = \frac{r_1}{1 - q^2/m_{\rm R}^2} + \frac{r_2}{1 - \alpha q^2/m_{\rm R}^2}$$

BZ(Ball-Zwicky<sup>2</sup>)

$$f(q^2) = \frac{r_1}{1 - \alpha q^2 / m_{\rm R}^2} + \frac{r_2}{(1 - \alpha q^2 / m_{\rm R}^2)^2}$$

<sup>1</sup>D. Becirevic and A. B. Kaidalov, arXiv:hep-ph/9904490 <sup>2</sup>P. Ball and R. Zwicky,arXiv:hep-ph/0406232, arXiv:hep-ph/0406261

Aoife Bharucha (IPPP)

### Series Type Parameterisations

SE (Series Expansion<sup>3</sup>)

$$f(t) = \frac{1}{B(t)\phi_f(t)} \sum_{k=0}^{\infty} a_k z^k(t)$$

with

$$z(t) = z(t, t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}} \quad \sum_{k=0}^{\infty} a_k^2 \le 1$$

 $t_0$  is a free parameter, optimised to reduce  $|z(t)|_{\text{max}}$ , and  $B(t) = z(m_R^2, t_0)$ . SSE (Simplified Series Expansion<sup>4</sup>)

$$f(t) = \frac{f_0}{1 - q^2/m_{\rm R}^2} \frac{\sum_{k=0}^{\infty} c_k z(t, t_0)}{\sum_{k=0}^{\infty} c_k z(0, t_0)}$$

<sup>3</sup>C. G. Boyd, B. Grinstein and R. F. Lebed, arXiv:hep-ph/9412324. <sup>4</sup>C. Bourrely, I. Caprini and L. Lellouch,arXiv:0807.2722

Aoife Bharucha (IPPP)

#### **Dispersive Bounds**



### A few details ..

$$\Pi_X(q^2) = i \int d^4x e^{iqx} \left\langle 0 \right| \mathrm{T} J_X(x) J_X^{\dagger}(0) \left| 0 \right\rangle$$

Unitarity approach: Quantity analytic so use unitarity relations  $\mathrm{Im}\Pi_X = \frac{1}{8\pi^2} \sum_{\Gamma} \int \frac{d^3 p_1 d^3 p_2}{(2E_1)(2E_2)} \delta^4(q - p_1 - p_2) \left\langle 0 \right| J_X^{\dagger} \left| \Gamma \right\rangle \left\langle \Gamma \right| J_X \left| 0 \right\rangle$ 

#### Unitarity/Positivity

- Only Positive terms in sum  $|\Gamma\rangle = |BK^*\rangle,$
- $\operatorname{Im}\Pi_X > \operatorname{Im}\Pi_X^{BK^*}$
- Use crossing symetry to express  $\Pi^{BK^*}_X$  in terms of form factors

### OPE

$$J_X(x)J_X^{\dagger}(0) = \sum_{n=1}^{\infty} C_n O_n$$

• 
$$\Pi_X(q^2) = \sum_{n=1}^{\infty} C_n \langle O_n \rangle$$

• Operators are condensates: I,  $\langle mq\bar{q}\rangle$  and  $\langle \frac{\alpha_s}{\pi}G^2\rangle$ 

### Preliminary Results for B to K

Combining Lattice<sup>5</sup> and LCSR<sup>6</sup> results:



<sup>5</sup>A. Al-Haydari *et al.* [QCDSF Collaboration], arXiv:0903.1664 [hep-lat]
 <sup>6</sup>P. Ball and R. Zwicky, arXiv:hep-ph/0406261

Aoife Bharucha (IPPP)

- $B \to K^* l^+ l^-$  QCDF predictions valid in  $1 6 \,\mathrm{GeV}^2$
- $B \to K^* \nu \bar{\nu}$  higher  $q^2$  form factors required
- Very limited lattice results for tensors only LCSR's valid at lower  $q^2$

#### Can Dispersive Bounds provide the answer?

- Can provide theoretical input to constrain the shape
- Calculated bounds, from Wilson coefficients of OPE
- Also include constraint from relations at large recoil
- Results to appear soon

#### Relating Observables to NP: EFTs

$$\mathcal{L} = \sum_{i} C_i O_i$$

For  $B \to K^*$  decays, important Operators are.. Electromagnetic Dipole  $O_7$  Vector/Axial Current  $O_{9(10)}$ 



#### Relating Observables to NP: EFTs

$$\mathcal{L} = \sum_{i} C_i O_i$$

For  $B \to K^*(\to K^-\pi^+)\mu^+\mu^-$ , important NP O's are.. Spin-Flipped EM Dipole  $O'_7$  Scalar/Pseudoscalar  $O_{S(P)}$ 



# What will the Flavour Telescope see?

- SM CP violation is doubly Cabibbo suppressed.
- 4 body decays, many angular observables, sensitive to different Wilson Coefficients.

## So we Focus on Additional..

- CP Violation
- Operators

## Keeping in Mind Bounds from..

- EDM's, CP Asymmetries....
- $B_s \to \mu^+ \mu^-$ ,  $B \to X_s \gamma$ ,  $B \to X_s \mu^+ \mu^-$

# What will the Flavour Telescope see?

- SM CP violation is doubly Cabibbo suppressed.
- 4 body decays, many angular observables, sensitive to different Wilson Coefficients.

## So we Focus on Additional..

- CP Violation
- Operators

## Keeping in Mind Bounds from..

- EDM's, CP Asymmetries....
- $B_s \to \mu^+ \mu^-$ ,  $B \to X_s \gamma$ ,  $B \to X_s \mu^+ \mu^-$

## Prospects for $B \to K^* \nu \bar{\nu}$



Correlation between  $BR(B \rightarrow K^* \nu \bar{\nu})$ and  $BR(B_s \rightarrow \mu^+ \mu^-)$  in the considered MSSM scenario. The blue circle represents the SM point, while the red square (green diamond) corresponds to the MSSM parameter set I (II).<sup>a</sup>

<sup>a</sup>W. Altmannshofer, A. J. Buras, D. M. Straub and M. Wick, arXiv:0902.0160

| Parameter Set | aneta | μ   | $M_2$ | $m_{	ilde{Q}}$ | $m_{\tilde{U}}$ | $A_t$ | $(\delta_u^{RL})_{32}$ |
|---------------|-------|-----|-------|----------------|-----------------|-------|------------------------|
| I             | 5     | 500 | 800   | 500            | 400             | -800  | 0.75                   |
| II            | 5     | 120 | 700   | 400            | 800             | -700  | -0.5                   |

Table: Two example MSSM parameter sets giving large effects in  $b \rightarrow s\nu\bar{\nu}$  transitions. Dimensionful quantities are expressed in GeV.

# Current Status/Prospects at LHCb



- EvtGen Model for  $B \to K^* \mu^+ \mu^-$  at NLO
- Includes trigger studies, acceptance effects
- Finds sets of allowed WCs using current experimental constraints

# Angular Observables for $B \to K^* \mu^+ \mu^-$

Choosing a good place to look..

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\Omega} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_K, \phi)$$
...where  $I(q^2, \theta_l, \theta_K, \phi) =$ 

$$\sum_{i=1}^{9} I_i^{(s/c)}(q^2) \omega_i(\theta_l, \theta_K, \phi)$$

Emphasize CP Conserving and CP Violating<sup>7</sup>Effects

$$S_i^{(a)} = \frac{I_i^{(a)} + \bar{I}_i^{(a)}}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \quad A_i^{(a)} = \frac{I_i^{(a)} - \bar{I}_i^{(a)}}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2}$$

<sup>7</sup>Also considered in C. Bobeth, G. Hiller and G. Piranishvili arXiv:0805.2525

Aoife Bharucha (IPPP)

#### Model Independent Analysis

#### Observable

### Most affected by

| $S_1^s$ , $S_1^c$ , $S_2^s$ , $S_2^c$ | $C_7, C_7', C_9, C_9', C_{10}, C_{10}'$             |
|---------------------------------------|-----------------------------------------------------|
| $S_3$                                 | $C_{7}^{\prime}, C_{9}^{\prime}, C_{10}^{\prime}$ . |
| $S_4$                                 | $C_7, C_7', C_{10}, C_{10}'$                        |
| $S_5$                                 | $C_7, C_7, C_9, C_{10}$                             |
| $S_6^s$                               | C <sub>7</sub> , C <sub>9</sub>                     |
| $A_7$                                 | $C_7, C_7', C_{10}, C_{10}'$                        |
| $A_8$                                 | $C_7, C_7', C_9, C_9', C_{10}'$                     |
| $A_9$                                 | $C'_{7}, C'_{9}, C'_{10}$                           |
| $S_6^c$                               | $C_S - C'_S$                                        |

## Theoretical Predictions: Specific Scenarios

#### Correlate zeros of $S_4$ , $S_5$ , $S_6^s$ with $B(b \rightarrow s\gamma)$



Bound on  $C_7$  from  $b \rightarrow s\gamma$  weakened if complex  $C_7$  due to additional CP violating phases.

Aoife Bharucha (IPPP)

# $S_5$ and $S_6$ at LHCb



Aoife Bharucha (IPPP)

## Prospects at LHCb: Additional Operators $(O'_7)$



Aoife Bharucha (IPPP)

- Form Factors for B decays are critical to the success of LHCb
- B → K<sup>\*</sup>μ<sup>+</sup>μ<sup>-</sup> observables provide insight into NP
   New NLO EvtGen model, promising preliminary results for zero's of S<sub>5</sub>, S<sub>6</sub>
- Early observation of  $S_3$  and  $A_9$  possible, but more data required to prove BSM effects.

- Form Factors for B decays are critical to the success of LHCb
- ${f B} 
  ightarrow {ar K}^* \mu^+ \mu^-$  observables provide insight into NP
- New NLO EvtGen model, promising preliminary results for zero's of S<sub>5</sub>, S<sub>6</sub>
- Early observation of  $S_3$  and  $A_9$  possible, but more data required to prove BSM effects.

- Form Factors for B decays are critical to the success of LHCb
- ${f B} 
  ightarrow {ar K}^* \mu^+ \mu^-$  observables provide insight into NP
- New NLO EvtGen model, promising preliminary results for zero's of S<sub>5</sub>, S<sub>6</sub>
- Early observation of  $S_3$  and  $A_9$  possible, but more data required to prove BSM effects.

- A natural expansion parameter for a function in an interval are orthonormal polynomials in the interval
- Domain of convergence is the ellipse passing through 1st singularity of function<sup>8</sup>
- Accelerate rate of convergence by mapping interior of cuntions analyticity domain to inside of ellipse, such that the region of interest is mapped to the segment between focal points<sup>9</sup>
- When the physical interval is far from the 1st singulartiy, ellipse becomes close to a circle, so a simple Taylor expansion about the centre has roughly the same radius of convergence as expansion in above polynomials.

<sup>8</sup>Walsh 1956 <sup>9</sup>Cutkosky and Deo 1968

Aoife Bharucha (IPPP)