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Motivation

The LHC is coming!

At a hadron collider, if you dont know precisely
what you are looking for, you probably won’t find it.



AdS/CFT
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Strong Dynamics as the Source of EWSB

Nevertheless, there has been a revival of EWSB from strong dynamics...

... using ideas in extra dimensions
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In practice: computations in 5D (weakly coupled) theory, so I’ll refer to these as 5D models.

To the extent that one believes the ``AdS/CFT” duality to be correct, the 5D picture defines 
implicitly a 4D strongly coupled theory, 

... allowing calculability... and ``opening” new possibilities...

ds2 = e−2kyηµνdxµdxν − dy2

Strong Dynamics from AdS5 models of EWSB 

• AdS in 5D            CFT in 4D                                         

• (Quasi) Conformal  strongly coupled theory in 4D (large N) dual to 
weakly coupled in 5D

• Build strongly coupled theories of the TeV scales using weakly coupled 
AdS5   ==> allows calculability and opens new possibilities

• Geometry of the extra dimension generates hierarchy exponentially                        

A revival of EWSB from strong dynamics using ideas in extra dimensions

Strong Dynamics as the Source of EWSB

Nevertheless, there has been a revival of EWSB from strong dynamics...
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 Higgs  localized in the IR brane ==> Higgs v.e.v. naturally of order of the TeV scale

~MPl ~ TeV

ds2 =
R2

z2

(
dx2

µ − dz2
)



ds2 =
R2

z2

(
dx2

µ − dz2
)

z > ε

Sbulk =
1
2

∫
d4x dz

√
g(gαβ∂αφ∂βφ + m2φ2)

d[O] = 2± ν = 2±
√

4 + m2R2

AdS/CFT

φ(p, z) = az2Jν(pz) + bz2J−ν(pz)
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AdS/CFT



Soft-Wall

Karch, Katz, Son, Stephanov hep-ph/0602229
Gherghetta, Batell hep-th/0801.4383

Soft wall
Karch, Katz, Son, Stephanov ’06

z

!

• Dilaton provides a
smooth cutoff to spacetime

S =
∫

d4xdz
√
−ge−ΦL

• Simplest model:

gMN = z−2ηMN

Φ(z) = z2

• Regge trajectories:

m2
n,S ∼ (n + S)
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dilaton
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AdS Gauge Fields

dilaton:

Cacciapaglia, Marandella, JT hep-ph/0804.0424 



f ′′(z)−
(

m +
1
z

)
f ′(z) + p2f(z) = 0

zIR = 100/m zIR = 200/m

Gauge KK Modes
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z5∂z

(
1
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)
− z2(p2 − µ2)φ−m2R2φ = 0

H = µz2

Sint =
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2

∫
d4x dz

√
gHφφ

〈O(p′)O(p)〉 ∝ δ(4)(p + p′)
(2π)4

(p2 − µ2)d−2

AdS/CFT Soft Wall



∆(p, µ, d) ≡
∫

d4x eipx〈0|TO(x)O†(0)|0〉|µ

=
Ad

2π
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∆(p, µ, 1) =
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Massive Unparticle

Fox, Rajaraman, Shirman hep-ph/0705.3092



Unparticles
Georgi: 

  a different way to calculate in CFT’s

  phase space looks like a fractional number                       
of particles

Georgi hep-ph/0703260, 0704.2457



dΦ(p, d) = Ad θ
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) (
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unparticle phase space



discuss, this can have a profound impact on their mo-
mentum dependence.

The spectral density ρ(p2, µ) defined in (7) obeys the
renormalization-group evolution equation [50]

dρ(p2, µ)

d lnµ
= −

[
2Γcusp(µ) ln

p2

µ2
+ 2γJ(µ)

]
ρ(p2, µ)

− 2Γcusp(µ)

∫ p2

0

dp′2
ρ(p′2, µ) − ρ(p2, µ)

p2 − p′2
. (8)

The quantities Γcusp and γJ are anomalous dimensions,
which depend on the renormalization scale only through
the running coupling αs(µ). Their perturbative expan-
sions are known to three-loop order. In particular, Γcusp

is the cusp anomalous dimension of Wilson loops with
light-like segments [56], which plays a central role in the
physics of soft-gluon interactions (see e.g. [57]). We stress
that the form of the evolution kernel in (8) is exact; its
simplicity is a consequence of dimensonal analysis com-
bined with some magic properties of Wilson lines.

The exact solution to the evolution equation was ob-
tained in [54]. It can be written in the form

ρ(p2, µ0) = N(M, µ0)
(
p2

)η−1

× j̃
(

ln
p2

M2
+ ∂η, M

) e−γEη

Γ(η)
, (9)

where ∂η denotes a derivative with respect to the quantity
η, which is then identified with

η =

∫ M2

µ2
0

dν2

ν2
Γcusp(ν) . (10)

The normalization factor N has scaling dimension −2η
and is given by

lnN(M, µ0) =

∫ M2

µ2
0

dν2

ν2

[
Γcusp(ν) ln

1

ν2
+ γJ(ν)

]
. (11)

This quantity is momentum-independent and will thus
be irrelevant to our discussion. The function j̃(x, M) has
a perturbative expansion free of large logarithms. It is
obtained from the Laplace transform

j̃(x, M) =

∫ ∞

0

dp2 e−p2/s ρ(p2, M) , (12)

where s = ex+γEM2. At one-loop order [58]

j̃(x, M) = 1 +
CF αs(M)

4π

(
2x2 − 3x + 7 −

2π2

3

)
. (13)

The two-loop expression for this function can be found
in [50].

When the tree-level approximation j̃ = 1 is used in
(9), the result exactly coincides with the unparticle spec-
tral density (2). The terms of order αs(M) in j̃ lead to
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FIG. 1. Comparison of the unparticle spectral density (2)
(dashed) and the spectral density (9) of a massless quark jet
at next-to-leading order in QCD (solid). We use parameters
M = 10 GeV and η = 0.5. The right plot shows the same
results on logarithmic scales.

logarithmic modifications of the simple power form. In
the “unparticle language” they would indicate a small
breaking of conformal invariance, which is unavoidable if
the unparticle sector is coupled to the Standard Model.
Therefore, our result (9) shares all features of a realistic
model for the spectral function of the unparticles of a
conformal sector coupled to the Standard Model. In Fig-
ure 1 we compare the results (2) and (9) for a particular
set of input parameters.

In our “interacting particle model” for unparticle
states the exponent η = dU − 1 is expressed as an in-
tegral over the cusp anomalous dimension, see (10). In a
theory such as QCD the numerical value of η can be O(1)
provided the scales µ0 and M are widely separated. This
is because the perturbative smallness of the cusp anoma-
lous dimension is overcome by the logarithmic integra-
tion over scales. In leading logarithmic approximation
one finds

η ≈
Γ0

β0
ln

αs(µ0)

αs(M)
(14)

with Γ0 = 4CF = 16/3 and β0 = 11
3

CA− 2
3
nf = 23/3 (for

nf = 5 light flavors). Considering the case M = 10GeV
as an example, we obtain η = 0.5 for µ ≈ 1.2GeV. Other
examples of jet functions have a similar functional form
but different values of η. For the example of a gluon jet
the one-loop coefficient Γ0 = 4CA is a factor 9/4 larger
than in the case of a quark jet (for Nc = 3), leading to
even larger η values.

The discussion above may be generalized to the case of
massive QCD jets. If the quark field ψ in (5) has mass m,
then relations (5)–(8) remain valid, but the solution (9)
must be modified. In this case it is no longer possible to
write the solution in closed form, however a perturbative
expansion of the resummed spectral function can still be
obtained [59,60]. At one-loop order one finds
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Quarks are Unparticles

Neubert hep-ph/0708.0036



Why (broken) CFT’s
are Interesting

 

  unparticles are equivalent to RS2

  IR cutoff at TeV turns RS2 to RS1

  a new type of IR cutoff could lead to
      new phenomenology for LHC
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ρ

∆(p) ∼ (µ2 − p2 − iε)d−2
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Bulk SUSY

Marti, Pomarol hep-th/0106256



SUSY CFT

Cacciapaglia, Marandella, JT hep-th/0802.2946 



Components



Components



Bulk Profiles



Whittaker Functions

In our case:



Effective Potential



Two-Point Function



discrete resonances below threshold
for c<0

Two-Point Function



Spectral Density
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SUSY Breaking

Scalar spectrum shifted up



KK Modes

scalar fermion

E



Scherk-Schwarz

Phys. Lett. B82, 60 (1979)

scalar fermion

E



SUSY-CFT

scalar fermion

E



Broken SUSY-CFT

scalar fermion

E



SUSY-Un-Partners

scalar fermion

E



SUSY-Un-Partner

scalar fermion

E



Decay Chains
E

squark quarkgluon gluino



Conclusions
There are new classes of SUSY spectra

that are entirely unexplored.

Are there models where SUSY breaking triggers
the gap and the splitting?


