

Phenomenology of SUSY Breaking

by

Ben Allanach (University of Cambridge)

Talk outline

- Current constraints on SUSY breaking
- Flavour violation
- R-parity violation
- LHC constraints on SUSY breaking

Q: Why perform global fits to SUSY using DM+indirect data

Supersymmetry Cambridge

Science & Technology Facilities Council

Q: Why perform global fits to SUSY using DM+indirect data

Science & Technology Facilities Council

Constraints on SUSY Models

CMSSM well-studied in literature: eg Ellis, Olive et al PLB565

(2003) 176; Roszkowski et al JHEP 0108 (2001) 024; Baltz, Gondolo, JHEP 0410 (2004) 052;...

Implementation

25 pMSSM input parameters are: $M_{1,2,3}$, $A_{t,b,\tau,\mu}$, $m_{H_{1,2}}$, $\tan \beta$, $m_{\tilde{d}_{R,L}} = m_{\tilde{s}_{R,L}}$, $m_{\tilde{u}_{R,L}} = m_{\tilde{c}_{R,L}}$, $m_{\tilde{e}_{R,L}} = m_{\tilde{\mu}_{R,L}}$, $m_{\tilde{t},\tilde{b},\tilde{\tau}_{R,L}}$ m_t , $m_b(m_b) \alpha_s(M_Z)^{\overline{MS}}$, $\alpha^{-1}(M_Z)^{\overline{MS}}$, M_Z . We use

- 95% C.L. direct search constraints
- $\Omega_{DM}h^2 = 0.1143 \pm 0.02$ Boudjema *et al*
- $\delta(g-2)_{\mu}/2 = (29.5 \pm 8.8) \times 10^{-10}$ Stöckinger *et al*
- *B*-physics observables including $BR[b \rightarrow s\gamma]_{E_{\gamma}>1.6} \text{ GeV} = (3.52 \pm 0.38) \times 10^{-4}$
- Electroweak data W Hollik, A Weber et al

$$2\ln \mathcal{L} = -\sum_{i} \chi_{i}^{2} + c = \sum_{i} \frac{(p_{i} - e_{i})^{2}}{\sigma_{i}^{2}} + c$$

Additional observables

$$\delta \frac{(g-2)_{\mu}}{2} \sim 13 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 \tan\beta$$

 $BR[b \to s\gamma] \propto \tan\beta (M_W/M_{SUSY})^2$

Application of Bayes'

 $\mathcal{L} \equiv p(\underline{d}|\underline{m}, H)$ is pdf of reproducing data \underline{d} assuming pMSSM hypothesis H and model parameters \underline{m}

$$p(\underline{m}|\underline{d},H) = p(\underline{d}|\underline{m},H)\frac{p(\underline{m},H)}{p(\underline{d},H)}$$

 $p(\underline{m}|\underline{d}, H)$ is called the posterior pdf. We will compare $p(\underline{m}, H) = c$ with a *different* prior.

$$p(m_0, M_{1/2}|\underline{d}, H) = \int d\underline{o} \ p(m_0, M_{1/2}, \underline{o}|\underline{d}, H)$$

Likelihood and Posterior

Q: What's the chance of observing someone to be pregnant, given that they are female?

Likelihood $p(\text{pregnant} \mid \text{female, human}) = 0.01$ Posterior $p(\text{female} \mid \text{pregnant, human}) = 1.00$

cience & Technology

Best-Fit Point

			$ \mathbf{O}^{\text{meas}} - \mathbf{O}^{\text{m}} / \sigma^{\text{meas}}$		
Observable	Measurement	Fit(Log)	0 1	2	3
m _w [GeV]	80.399 ± 0.025	80.402			
Г <mark>_z [GeV]</mark>	$\textbf{2.4952} \pm \textbf{0.0025}$	2.4964			
$\sin^2 \theta_{lep}^{eff}$	$\textbf{0.2324} \pm \textbf{0.0012}$	0.2314			
δ (g-2) $_{\mu}$ $ imes$ 10 ¹⁰	$\textbf{30.20} \pm \textbf{9.02}$	26.74			
R ⁰	$\textbf{20.767} \pm \textbf{0.025}$	20.760			
R _b	$\textbf{0.21629} \pm \textbf{0.00066}$	0.21962			
R _c	$\textbf{0.1721} \pm \textbf{0.0030}$	0.1723			
A _e	$\textbf{0.1513} \pm \textbf{0.0021}$	0.1483			
A _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935			
A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.685			
A ^b _{FB}	0.0992 ± 0.0016	0.1040			
A ^c _{FB}	$\textbf{0.071} \pm \textbf{0.035}$	0.074			
$\text{BR(B} \rightarrow \text{X}_{\text{s}} \gamma\text{)} \times 10^4$	$\textbf{3.55} \pm \textbf{0.42}$	3.42			
R _{BR(B₁→τν)}	1.11± 0.32	1.00			
R _{A M_B}	$\textbf{1.15} \pm \textbf{0.40}$	1.00			
Δ ₀₋	$\textbf{0.0375} \pm \textbf{0.0289}$	0.0748			
$\Omega_{CDM}h^2$	0.11± 0.02	0.13			
			0 1	2	3

AbdusSalam, BCA, Quevedo, Feroz, Hobson, arXiv:0904.2548

Science & Technology Facilities Counci

supersymmetry

Working grow

Cambridge

Obtained with MultiNest^{*a*} algorithm in 16 CPU years. Prior dependence is *useful*: which predictions are robust?

^{*a*}Feroz, Hobson arxiv:0704.3704

Dark matter detection

DM properties look too prior dependent to say anything concrete

KISMET

BCA, Dolan, JHEP08 (2008) 015, arXiv:0806.1184

$$M_{1/2} = -A_0 = m_0/\sqrt{3}$$

 $M_X = 10^{11} \text{ GeV}$

Two constraints almost enough

Model Comparison

Calculate the *Bayesian evidence* of each model

$$\mathcal{Z}_i = \int p(\underline{d}|\underline{m}, H_i) \ p(\underline{m}|H_i) \ d\underline{m}$$

$\underline{p(H_1 \underline{d})}$	$\underline{p(\underline{d} H_1)p(H_1)}$	$\underline{\mathcal{Z}}_1 p(H_1)$
$p(H_0 \underline{d})$	$\stackrel{-}{=} \overline{p(\underline{d} H_0)p(H_0)} \stackrel{-}{=}$	$\overline{\mathcal{Z}_0} \overline{p(H_0)},$

$p_i/p_{ m mSUGRA}^{lin}$	asymmetric ^{<i>a</i>} \mathcal{L}_{DM}		
Model/Prior	linear	log	flat μ, B
mSUGRA	1	3	4
mAMSB	164	403	148
LVS	18	20	22

International workshop on supersymmetry and supersymmetry breaking lan, Feroz, Hobson, to appear

Any Questions?

Cambridge

Flavour Violating SUSY

In the MSSM, we additionally have soft mass terms like

 $V_2 = \tilde{Q}_{iLa}^* \, (m_{\tilde{Q}}^2)_{ij} \, \tilde{Q}_{jL}^a + \tilde{u}_{iR} \, (m_{\tilde{u}}^2)_{ij} \, \tilde{u}_{jR}^* + \tilde{d}_{iR} \, (m_{\tilde{d}}^2)_{ij} \, \tilde{d}_{jR}^*.$

SUSY flavour problem: *Nearly all of this parameter space is ruled out by flavour constraints*. There is clearly a need for some organising principle from symmetry and/or additional dynamics. There are many approaches to the flavour problem in SUSY breaking (eg mSUGRA, GMSB, \tilde{g} MSB, MRSSM^a etc)

^{*a*}Kribs, Poppitz, Weiner, arXiv:0712.2039

Vorking grow

Anomaly Mediated SUSY Breaking

Loop suppressed soft masses^{*a*}

$$M_{\alpha} = m_{3/2}\beta_{g_{\alpha}}/g_{\alpha},$$

$$(m^{2})^{i}{}_{j} = \frac{1}{2}m_{3/2}^{2}\mu \frac{d}{d\mu}\gamma^{i}{}_{j},$$

$$\gamma^{i}_{j} = \frac{1}{2}Y^{ikl}Y_{jkl} - 2\sum_{\alpha}g_{\alpha}^{2}[C(R_{\alpha})]^{i}{}_{j}.$$

- Always present for a hidden sector
- Dominant in brane set-up:

$$\mathcal{L} = \mathcal{L}_{vis} + \mathcal{L}_{hid}$$

SUSY Flavour problem ameliorated

International workshop on supersymmetry and supersymmetry breaking

Scale invariant expressions^{*a*} in terms of SUSY couplings and gravitino mass $m_{3/2}$.

$$M_{i} = \beta_{i} \frac{g_{i}^{2}}{16\pi^{2}} m_{3/2}, \ \beta_{i} = (33/5, 1, -3)$$

$$m_{\tilde{u}_{R},\tilde{c}_{R}}^{2} = \frac{m_{3/2}^{2}}{(16\pi^{2})^{2}} \left(-\frac{88}{25}g_{1}^{4} + 8g_{3}^{4}\right)$$

$$m_{\tilde{e}_{R}}^{2} = -\frac{198}{25} \frac{m_{3/2}^{2}g_{1}^{4}}{(16\pi^{2})^{2}}$$

cience & Technology

Q: What makes the slepton mass squared values positive? ^aGherghetta, Giudice and Wells, hep-ph/9904378

Solving Tachyonic Sleptons

- Bulk singlet contributions *m*₀: mAMSB
- Non-decoupling effects:
 - Katz, Shadmi, Shirman
 - Pomarol, Rattazzi
- Extra D-terms from additional U(1): Jack, Jones
- Extra (heavy) leptons: Chacko et al
- R_p Violation: BCA, Dedes

Here, we shall consider the squark mixings, and therefore only the models which leave the squarks' AMSB terms untouched (in some cases, approximately and in some exactly).

ience & Technolog

Flavoured AMSB $\begin{array}{c} \mathbf{1} \\ \mathbf{$

Science & Technology cilities Counci

supersymme,

ambridge Orking grout Previous literature only considers (33) entries to Yukawas. We include flavour corrections, e.g.

$$\frac{(16\pi^{2})^{2}(m_{\tilde{Q}}^{2})^{T}}{m_{3/2}^{2}} = \left(-\frac{11}{50}g_{1}^{4} - \frac{3}{2}g_{2}^{4} + 8g_{3}^{4}\right) \cdot \mathbf{1} + \left(Y_{U}Y_{U}^{\dagger}\right) \left(3\mathrm{Tr}(Y_{U}Y_{U}^{\dagger}) - \frac{13}{15}g_{1}^{2} - 3g_{2}^{2} - \frac{16}{3}g_{3}^{2}\right) + \left(Y_{D}Y_{U}^{\dagger}\right) \left(3\mathrm{Tr}(Y_{D}Y_{U}^{\dagger}) + \mathrm{Tr}(Y_{E}Y_{E}^{\dagger}) - \frac{7}{15}g_{1}^{2} - 3g_{2}^{2} - \frac{16}{3}g_{3}^{2}\right) + Y_{U}Y_{U}^{\dagger}Y_{D}Y_{D}^{\dagger} + Y_{D}Y_{D}^{\dagger}Y_{U}Y_{U}^{\dagger} + 3(Y_{U}Y_{U}^{\dagger})^{2} + 3(Y_{D}Y_{D}^{\dagger})^{2}.$$

NB Extremely predictive. We'll use this to predict sequence with the sequence of the

B.C. Allanach – p. 18

Dominant I hird Family Approximation

 $\left(m_{\tilde{U}_L}^2\right)_{ii} = \frac{m_{3/2}^2}{(16\pi^2)^2} \left[\delta_{ij} \left(-\frac{11}{50}g_1^4 - \frac{3}{2}g_2^4 + 8g_3^4\right)\right]$ + $\delta_{i3}\delta_{j3}\lambda_t^2(\hat{\beta}_{\lambda_t}-\lambda_b^2)$ $+ V_{ib}V_{ib}^*\lambda_b^2(\hat{eta}_{\lambda_b}-\lambda_t^2)$ $+ \lambda_t^2 \lambda_b^2 (\delta_{i3} V_{ib}^* V_{tb} + \delta_{j3} V_{ib} V_{tb}^*) ,$ $\hat{\beta}_{\lambda_t} = 6\lambda_t^2 + \lambda_b^2 - \left(\frac{13}{15}g_1^2 + 3g_2^2 + \frac{16}{3}g_3^2\right),$ $\hat{\beta}_{\lambda_b} = 6\lambda_b^2 + \lambda_{\tau}^2 + \lambda_t^2 - \left(\frac{7}{15}g_1^2 + 3g_2^2 + \frac{16}{3}g_3^2\right).$

in the super-CKM basis. $\beta_i < 0$. NB at low $\tan \beta$, $\hat{\beta}_{\lambda_t}$, $\lambda_b \rightarrow 0$: AMSB is flavour conserving.

Working grow

 $(\delta^u_{ij})_{LL} \equiv m^2_{\tilde{u}_{Lij}}$ $/\sqrt{m_{\tilde{u}_{Lii}}^2+m_{\tilde{u}_{Ljj}}^2}$

 $BR(B \rightarrow X_S \gamma)$

 $m_{3/2} = 40$ TeV. SOFTSUSY3.0 and SusyBSG1.2. $BR^{exp} = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4},$

Includes 2-loop eg Borzumati, Grøub, Yamada, Phys. Rev. D69 (2004) 055005

S

b

International workshop on supersymmetry and supersymmetry breaking

B.C. Allanach – p. 21

S

 $BR(B \rightarrow X_S \gamma)$

 $m_{3/2} = 40$ TeV. SOFTSUSY3.0 and SusyBSG1.2. $BR^{exp} = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4},$

022 for flavoured MSSN Everett, Kane, Rigolin, Wang, Wang, JHE

S

b

International workshop on supersymmetry and supersymmetry breaking

B.C. Allanach – p. 21

S

$BR(B_s \rightarrow \mu^+ \mu^-)$: LHCb

SOFTSUSY3. 0. $BR^{exp} < 58 \times 10^{-9}$,

International workshop on supersymmetry and supersymmetry breaking

Any Questions?

Cambridge

Motivation for R_p

- It has additional search possibilities.
- Neutrino masses and mixings testable at LHC

LHC Single Selectron Production

Like-sign dielectrons and two hard jets connects with neutrinoless double beta decay:

$$\sigma(pp \to \tilde{l}) \propto \frac{|\lambda'_{111}|^2}{m_{\tilde{e}_L}^3} \qquad [T_{1/2}^{0\nu\beta\beta}(\text{Ge})]^{-1} \propto \frac{|\lambda'_{111}|^4}{M_{susy}^{10}}$$

So, there is an interesting interplay between the two^a

International workshop on supersymmetry and supersymmetry breaking v: 0902.4697

Neutrinoless Double Beta Decay

Heidelberg-Moscow limit:

 $T_{1/2}^{0\nu\beta\beta}(\text{Ge}) \ge 1.9 \cdot 10^{25} \text{yrs} \Rightarrow m_{\nu} < 0.46 \text{eV}.$

Next round of experiments are going to improve the $T_{1/2}^{0\nu\beta\beta}(Ge)$ bound by a couple of orders of magnitude

Neutrinoless-LHC Interplay

Used Dreiner, Richardson, Seymour, PRD63 (2001) 055008 for reach 10 fb⁻¹, tan $\beta = 10, 5\sigma$ discovery of \tilde{e}

Any Questions?

Supersymmetry Cambridge

Collider Sparticle Production

Strong sparticle production and decay to dark matter particles.

Any (light enough) dark matter candidate that couples to hadrons can be produced at the LHC

SUSY Kinematics: a Reminder

Take a particle decaying into 2 particles, eg $H^0 \rightarrow b\overline{b}$. We define the invariant mass of the $b\overline{b}$ pair such that:

Is *invariant* in boosted frames *Question*: What happens to invariant mass in SUSY cascade decays, where we miss the final particle?

Q: Can we measure enough of these to pin SUSY^a down? ^aBCA, Lester, Parker, Webber, JHEP 0009 (2000) 004

Science & Technology

M_{II} (GeV)

Selectron-Smuon Splitting

In GUT-scale models, $\Delta m^2(M_Z) = \Delta m^2(M_Z)$

$$M_Z) = \Delta m^2 (M_X) + \frac{8m_{\mu}^2}{16\pi^2 v^2} \Big[m_{\tilde{\mu}_R}^2 (M_X) + m_{\tilde{\mu}_L}^2 (M_X) + m_{H_1}^2 (M_X) + A_{\mu}^2 (M_X) \Big] \tan^2 \beta \ln \left(\frac{M_X}{M_Z}\right).$$

In AMSB, we have $\frac{(16\pi^2)^2 (m_{\tilde{e}_R}^2)}{m_{3/2}^2} = \left(-\frac{198}{25}g_1^4\right) \cdot \mathbf{1} + 6(Y_E^{\dagger}Y_E)^2 + \left(Y_E^{\dagger}Y_E\right) \left(\operatorname{Tr}(2Y_EY_E^{\dagger} + 6Y_DY_D^{\dagger}) - \frac{18}{5}g_1^2 - 6g_2^2\right)$

Selectron-smuon mass splitting In AMSB, $\frac{\Delta m^2}{m_{3/2}^2} = \frac{2m_{\mu}^2 \tan^4 \beta}{(16\pi^2)^2 v^2} \left[\frac{12m_b^2 + 4m_{\tau}^2}{v^2} \right]$ $\frac{1}{\tan^2\beta} \left(\frac{18}{5} g_1^2 + 6g_2^2 \right)$ Dilepton edge at $m_{ll}^2(\max) = \frac{(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)}{m_{\tilde{l}}^2}$ $\Rightarrow \frac{\Delta m_{ll}}{m_{ll}} = \frac{\Delta m_{\tilde{l}}}{m_{\tilde{l}}} \left(\frac{m_{\chi_1^0}^2 m_{\chi_2^0}^2 - m_{\tilde{l}}^4}{(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)} \right),$

Working grout

Experimental Precision

SUGRA point 5: $m_0 = 100$ GeV, $m_{1/2} = 300$ GeV, $A_0 = 300$ GeV, $\tan \beta = 2.1$. Total SUSY cross-section from HERWIG6.510 is 24 pb. Pass through AcerDet minimal rough detector sim,

International workshop on supersymmetry and supersymmetry breaking

Science & Technology Facilities Council

Ofking growt

Background Subtraction

We can still subtract^{*a*} SM backgrounds like those from $t\bar{t}$ or W^+W^- by (eg)

$$N_{e^+e^-} - \frac{1}{2} \left(N_{e^+\mu^-} + N_{e^-\mu^+} \right),$$

but we'll have to know the efficiencies of es and μ s well.

Use muons/electrons from Z^0 pole to calibrate energies/efficiencies by extrapolation: for SPS1a,3,5,9 $m_{ll} = 80, 118, 99, 122, 343$ GeV. Best guess $\Delta E/E = 0.1\%$

^aSee Goto, Kawagoe, Nojiri, Phys. Rev. D70 (2004) 075016 for BRs/charge asymmetries sensitive to $\tilde{\mu}_L - \tilde{\mu}_R$ mixing

Difference in mass distributions

 $\Delta m/m = 2\%$ and (black) no energy resolution Red: Energy resolution Blue: $\Delta m/m = 0$ with energy resolution

Thus we could be fooled by the difference.

Best to fit both \tilde{e} , $\tilde{\mu}$ endpoints separately.^a

^aBCA, Conlon, Lester, Phys. Rev. D77 (2008) 076006, arXiv:0801.366

International workshop on supersymmetry and supersymmetry breaking

Summary

- Current indirect data are weak and only constrain models with a couple of extra parameters: LHC will change this situation
- Want predictivity in flavour sector eg AMSB. LHCb data going to provide BR(B_s → μ⁺μ⁻) for instance.
- SLHA2 compliant flavour tools developed in process SOFTSUSY3.0^{*a*}:, SUSYBSG1.3^{*b*}
- Does your model violate R_p ? It could lead to interesting *detection possibilities*.
- Constrained models' useful predictions are *those that can be easily measured* bear in mind

cience & Technolog

Proton decay

 \underline{R}_{p} terms are lepton number L, or baryon number B violating. \mathcal{U}

 $\xrightarrow{\tau}_{\text{Cambridge}} \nu K^+) > 7 \cdot 10^{32} yr \Rightarrow \lambda'_{11k} \cdot \lambda''_{11k} \sim 10^{-27} \left(\frac{\tilde{m}_{d_k}}{100 \text{ GeV}}\right)^2.$

Alternatives to R_p

All of the following stabilise the proton:

- Matter Parity $M_p = (-1)^{3B+L}$. Does exactly the same job as R_p .
- Baryon Parity $B_p = (-1)^{3B}$. Allows \mathbb{R}_p terms $\lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k$.
- Lepton Parity $L_p = (-1)^L$. Allows \mathbb{R}_p terms $\lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$.

The second two alternatives allow for increased SUSY detection possibilities.

Minimal Flavour Violation

In BSM models, MFV says that, essentially

SM Yukawa couplings contain *all* of the flavour violation in the model.

SM has a global $U(3)_Q \times U(3)_L \times U(3)_e \times U(3)_d \times U(3)_u$ flavour symmetry where Q, L, e_R, u_R, d_R all transform as a fundamental representation under a U(3) and singlets under the rest, since terms like

 $\mathcal{L}_{kin} = \bar{Q}_i i D Q_i + \bar{L}_i i D L_i + \bar{e}_{Ri} i D e_{Ri} + \dots$

are invariant.

MFV and Yukawa Couplings

Even Yukawa couplings like

 $\mathcal{L}_{yuk} = \bar{Q}_i H(Y_U)_{ij} u_{Rj}$

are invariant if we impose that, under $U(3)^5$

 $(Y_U)_{ij} \to U_Q(Y_U)_{ij}U_u^{\dagger}.$

transforms as a spurion field^a.

These models are in general safer than non-MFV models from being ruled out by flavour constraints.

^{*a*}D'Ambrosio, Giudice, Isidori, Strumia, Nucl. Phys. B645 (2002) 155

SUSY

which look like they break the symmetry. Suppose we can write, for some SUSY breaking scheme, e.g.

 $(m_{\tilde{u}}^2)_{ij} = z_1^u \delta_{ij} + z_2^u (Y_U^{\dagger} Y_U) + z_3^u Y_U^{\dagger} Y_D Y_D^{\dagger} Y_U + z_4^u (Y_U^{\dagger} Y_U)^2 + \dots$

then MFV is preserved in the term

$$\tilde{u}_{iR} \,(m_{\tilde{u}}^2)_{ij} \, \tilde{u}_{jR}^*.$$

In fact, such an expansion spans all possible^{*a*} $(m_{\tilde{u}}^2)_{ij}$ unless

$$\frac{z_{i>1}}{z_1} \le \mathcal{O}(1) \Rightarrow \text{AMSB}$$

Supersymmetry Cambridge

^aColangelo, Nikolidakis, Smith, Eur. Phys. J. C59 (2009) 75

Cambridge

Ofking group

MSSM is MFV?

By use of Cayley-Hamilton identities^{*a*}

$$0 = M^{3} - [M]M^{2} + \frac{1}{2}M([M]^{2} - [M^{2}]) - |M|$$
$$M| = \frac{1}{3}[M^{3}] - \frac{1}{2}[M][M^{2}] + \frac{1}{6}[M]^{3},$$

it can be shown that the MFV expansion terminates after 18 terms *for an arbitrary hermitian matrix*. Thus, the MSSM *always* respects $U(3)^5$! To make the definition of MFV meaningful, we add

$$\frac{z_{i>1}}{z_1} \le \mathcal{O}(1) \Rightarrow \mathbf{AMSB}$$

^aColangelo, Nikolidakis, Smith, Eur. Phys. J. C59 (2009) 7 International workshop on supersymmetry and supersymmetry breaking

B.C. Allanach – p. 44

MFV Decomposition

 $\tan\beta = 10$

 $z_1^u = m_{3/2}^2 \left(-\frac{88}{25}g_1^4 + 8g_3^4\right) / (16\pi^2)$ $z_4^u = 6m_{3/2}^2 / (16\pi^2)$ Nowhere flavour blind MSUGRA/GMSB have small $z_{i>1}$ AMSB is MFV We'll predict δ s, eg:

 $(\delta_{ij}^{q})_{LL} = m_{\tilde{q}_{ij}}^2 / \sqrt{m_{\tilde{q}_{Lii}}^2 m_{\tilde{q}_{Lij}}^2}.$

Volume Effects

Can't rely on a good χ^2 in non-Gaussian situation

QIRFP of λ_t

Neglecting electroweak gauge couplings, solve RGEs to obtain in IRQFP limit $\lambda_t(M_X) \to \infty$

$$\frac{\lambda_t^2(m_t)}{g_3^2(m_t)} = \frac{7}{18} \left(1 - \left(\frac{g_3^2(M_X)}{g_3^2(m_t)}\right)^{\frac{7}{9}} \right)^{-1}$$

Putting in the electroweak corrections and $M_X = M_{GUT}$,

 $\lambda_t(m_t) = 1.1$

whereas $\hat{\beta}_t$ vanishes for $\lambda_t = 1.2$: flavour violation at low tan β has an additional suppression.

Anomalous mag. moment of μ

U(1)' solution to tachyonic sleptons^{*a*}. $m_{3/2} = 40$ TeV, $\mu > 0$, have a solution to $\delta a_{\mu} = (29.5 \pm 8.8) \times 10^{-10}$, $BR(B_s \to X_S \gamma)$ for $8 < \tan \beta < 14$:

cience & Technolog

^aHodgson, Jack, Jones, JHEP 0710 (2007) 070, arXiv:0709.2854

Constraints

 \mathcal{L}_{MSSM} strongly constrained by absence of new physics contributions to FCNCs, eg $BR(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$ by MEGA. Constrains off-diagonal propagator mixing between selectron and smuon flavour eigenstates to

$$\frac{m_{\tilde{L}_{12}}^2}{m_{\tilde{L}_{11}}^2 + m_{\tilde{L}_{22}}^2} \stackrel{<}{\sim} 6 \times 10^{-4}.$$

RR constraints similar over most of parameter space, but there are possible cancellations.

Unconstraints

However, these constraints do *not* constrain selectron-smuon mass splitting

$$\Delta m^2 \equiv m_{\tilde{\mu}_R}^2 - m_{\tilde{e}_R}^2$$

in the absence of lepton flavour violation (LFV). Some other work on SUSY LFV at LHC: Agashe, Graesser hep-ph/9904422; Hinchliffe, Paige hep-ph/0010086; Hisano, Kitano, Nojiri hep-ph/0202129; Carvallo, Ellis, Gomez, Lola, Romao hep-ph/0206148; Bartl, Hidaka, Hohenwarter-Sodek, Kernreiter, Majerotto, Porod 0510074; Grossman, Nir, Thaler, Volansky, Zupan 0706.1845; Feng, Lester, Nir, Shadmi 0712.0674

Enhancement Factor

Figure 2: $(\Delta m_{ll}/m_{ll})/(\Delta m_{\tilde{l}}/m_{\tilde{l}})$ as a function of $\Delta m_1 / \Delta m_2 \equiv (m_{\tilde{l}} - m_{\chi_1^0}) / (m_{\chi_2^0} - m_{\chi_1^0})$ for three dif-International vertice participation of the superformance of the second state of the s

B.C. Allanach – p. 51

Luminosity Dependence

Integrated	Events	Electron	Muon
Luminosity	below	Endpoint	Endpoint
(fb^{-1})	100 GeV	(GeV)	(GeV)
16.0	22145	97.47 ± 0.09	97.56 ± 0.18
8.0	11131	97.41 ± 0.13	97.83 ± 0.23
4.0	5520	97.54 ± 0.19	97.63 ± 0.35
2.0	2707	97.52 ± 0.28	97.56 ± 0.50

Fractional fit error

 $\Sigma = \sqrt{(0.002\sqrt{22145/N})^2 + 0.001^2}$ defined by $\Delta E/E$ and largest endpoint error.

Splitting Discovery

Define splitting discovery significance

$$S_1 = \left| \frac{\Delta m_{ll}}{m_{ll}} \right| \div \Sigma$$

In mSUGRA, $S_1(\max) = 0.5$. If trigger and reconstruction efficiencies could be controlled, one could also use

(4)

$$S_2 = \frac{N_{ee} - N_{\mu\mu}}{\sqrt{N}}.$$

(we won't)

mSUGRA Degeneracy

In fact, mSUGRA splittings at large $\tan \beta$ can often be several %. But at large $\tan \beta$, $\tilde{\tau}_R$ is light and dominates decay modes with $BR(\chi_2^0 \to \tilde{l}_R l) \ll 1$, $BR(\chi_2^0 \to \tilde{\tau}_1 \tau) \approx 1$.

If we depart from mSUGRA by making $\tilde{\tau}$ s heavy, one might easily discriminate from smuon-selectron universality: $m_0 = 148 \text{ GeV}$, $m_{1/2} = 250 \text{ GeV}$, $A_0 = -600 \text{ GeV}$, $\tan \beta = 40 \text{ but } m_{\tilde{\tau}_{L,R}} = 950 \text{ GeV}$: $\Delta m_{\tilde{l}}/m_{\tilde{l}} = 2.3 \times 10^{-3} \text{ and } \Delta m_{ll}/m_{ll} = 1.5\%$ whereas $\Sigma = 0.27\%$, allowing an $(S_1 > 5)$ -sigma discovery.

ience & Technolog

1σ Sensitivity to \tilde{e} - $\tilde{\mu}$ Universality

 $\mathbf{1}$

Science & Technology Facilities Council

supersymmetry

Cambridge

Extra Broken U(1)

$$Q \quad \bar{U} \quad \bar{D} \quad H_1 \quad H_2 \quad \bar{\nu} \\ -\frac{1}{3}L \quad -e - \frac{2}{3}L \quad e + \frac{4}{3}L \quad -e - L \quad e + L \quad -2L - e$$

$$\begin{split} m_{\tilde{Q}}^2 &\to m_{\tilde{Q}}^2 - \xi \, \frac{L}{3} . \mathbf{1}, \ m_{\tilde{u}}^2 \to m_{\tilde{u}}^2 - \xi \left(e + \frac{2}{3}L \right) . \mathbf{1}, \\ m_{\tilde{d}}^2 &\to m_{\tilde{d}}^2 + \xi \left(e + \frac{4}{3}L \right) . \mathbf{1} \end{split}$$

 \mathcal{A}

^aHodgson, Jack, Jones, JHEP 0710 (2007) 070, arXiv:0709.2854 International workshop on supersymmetry and supersymmetry breaking

Lepton number violation

Need to get all six slepton masses positive, while respecting bounds on couplings: $W = \lambda_{ijk}L_iL_jE_k$

Search through min number of operators, and get BCA, Dedes, JHEP 06 (2000) 017, hep-ph/0003222 $(m_E^2)_2^2 = \frac{M_{3/2}^2}{(16\pi^2)^2} \left[\lambda_{231}^2 (4\lambda_{231}^2 + \lambda_{123}^2 + \lambda_{132}^2) - \frac{198}{25} g_1^4 \right]$

 $\overline{1}$

cience & Technology

Cambridge

Orking grow