
The Pseudo-Nambu Goldstone Boson of

Metastable SUSY-Violation

Howard E. Haber

Workshop on SUSY-Breaking

IPPP Durham

21 April 2009

Based on work in collaboration with Tom Banks.

Many thanks to Michael Dine and Yuri Shirman for valuable conversations

concerning this work.



Outline

• Directions in supersymmetry (SUSY)-breaking

• Some generic features of metastable SUSY-breaking à la ISS

• The Pseudo-Nambu-Goldstone boson (PNGB) of metastable SUSY-

breaking

• C and P quantum number of the PNGB

• Spontaneous C and P violation in the metastable vacuum

• PNGB Yukawa couplings to Standard Model fermions

• Phenomenological Constraints

• Conclusions



The quest for supersymmetry breaking

• The paradigm: communication of SUSY-breaking to the MSSM

Consistent spontaneous SUSY breaking with the MSSM (or its extension)

is not phenomenologically viable. So, one postulates that SUSY-breaking

occurs in some other sector that is separate from the MSSM. The SUSY-

breaking is then communicated to the MSSM via loops that consist of heavy

particles and their superpartners of the SUSY-breaking sector.

• soft-SUSY-breaking

Integrating out the heavy particles yields the MSSM along with the requisite

soft-SUSY breaking terms. The goal is to relate the soft-SUSY-breaking

parameters of the MSSM to the fundamental source of SUSY-breaking.



• Viable fundamental theories of SUSY-breaking

A viable fundamental theory of SUSY-breaking (which determiness the origin

of SUSY-breaking mass parameters that enter as coefficients of relevant

operators) is not easily established. In 2006, Intriligator, Seiberg and Shih

(ISS) argued that the space of viable models would be considerably enlarged

if one allowed for metastable SUSY-breaking (i.e., local SUSY-breaking

minima that are not global). As long as the lifetime of the metastable

vacuum is sufficiently long, the corresponding model is a potential candidate

for the fundamental SUSY-breaking of our world.

• Metastable SUSY-breaking is inevitable

To quote from ISS, metastable SUSY-breaking is inevitable with mild

assumptions.



The framework for metastable SUSY-breaking

We shall employ an ISS-type model to provide the fundamental source of

SUSY-breaking (in the metastable vacuum) that is communicated to the

MSSM. This model will consist of an SU(Nc) super Yang Mills theory

consisting of NF flavors of vector-like quarks (denoted henceforth by Q).

An SU(3)×SU(2)×U(1) subgroup of the global SU(NF )×SU(NF ) flavor

symmetry is gauged and identified as the Standard Model gauge group.

In the dual magnetic theory (assuming Nc < NF <
3
2Nc), some of the dual

quarks acquire non-zero vevs at the SUSY-breaking metastable minimum.

Since these quarks carry meta-baryon number [we use “meta” here to

distinguish this from ordinary baryon number carried by the SM quarks], the

meta-baryon number is spontaneously broken at the ISS scale, denoted by

ΛISS.
∗

∗Since the ISS sector is vector-like with respect to the SU(NC), the meta-baryon number is a non-

anomalous global symmetry.



The PNGB of metastable SUSY-violation

The spontaneous breaking of meta-baryon number yields an exactly massless

Goldstone boson, P. But, we do not expect the meta-baryon number global

symmetry to be exact to arbitrarily high energy scales.

Let MU ≫ ΛISS be the scale at which the global meta-baryon number

is explicitly broken. Taking the (irrelevant) operators generated at this

high-scale into account, the Goldstone boson of spontaneous meta-baryon

number breaking acquires a mass—it is now a pseudo-Nambu-Goldstone

boson (PNGB).

The lowest gauge-invariant operator that violates meta-baryon number is

δW ∼
1

ΛNc−3
U

QNc ,

where we assume that Nc > 3 (otherwise the above operator is no longer

irrelevant).



If for some reason, the above operator is disallowed (due, say, to discrete

symmetries preserved at the scale MU) one can introduce an extra singlet

field S and choose,

δW ∼
1

ΛNc+p−3
U

QNcSp ,

for some suitably chosen p. In either case, P acquires a non-trivial potential

due to the explicit breaking:

V ∼ Λ4
ISS

(
ΛISS

MU

)Mc+p−3

U(P/ΛISS), ,

where U(x) = U0 + cx2 + . . . . Consequently,

m2
P ∼ Λ2

ISS

(
ΛISS

MU

)Mc+p−3

.



A range of possible PNGB masses

The choice of MISS and MU is highly model-dependent. Since ΛISS plays the role of a

messenger mass of GMSB, one expects ΛISS to be in the TeV to multi-TeV range. In this

work we choose:

ΛISS ∼ 2 TeV ,

which is probably as optimistic as one can get.

For the high-energy scale, one can imagine a number of possible choices for MU :

• the reduced Planck scale (2 × 1018 GeV)

• the grand unification scale (2 × 1016 GeV)

• the right-handed neutrino (seesaw) scale (1014 GeV)

• the axion scale (108—1012 GeV)

Finally, we choose Nc and p. As we previously noted that Nc ≥ 3, we consider three

values Nc + p = 4, 5, 6. Taking the extremes yields a range of masses

mP ∼ 10
−10

eV — 10 GeV .



PNGB quantum numbers

The ISS sector consists of vector-like quarks with SU(Nc) gauge-interactions

that conserve C and P separately.

The couplings of P to the ISS sector naively conserves C and P, and thus we

can assign definite C and P quantum numbers to P. Since the meta-baryon

current is a vector (not axial vector) current, it follows from:

〈0|JµMB(0)|P〉 = fPq
µ ,

that C(P) = −1 and P (P) = +1. In contrast, the SM pion, for which

〈0|Aµ(0)|π〉 = fπq
µ (where Aµ = ūγµγ5d is an axial vector current) implies

that C(π) = +1 and P (π) = −1.

Thus, P is a CP-odd, C-odd scalar. As such, it cannot couple diagonally to

a fermion-antifermion pair.



Spontaneous violation of C and P

Consider the C-conserving superpotential of a toy model:

W = φiMijφj − f
2
(M11 +M22) , i, j = 1, 2 ,

where the transformation laws of the superfields under C are given by

φi ↔ φi , Mij ↔ Mji .

The scalar potential has a minimum at:

〈φ1〉 = v , 〈φ1〉 = v , 〈M22〉 = m0 ,

with vv = f2 and all other scalar field vevs equal to zero. At the potential minimum,

V = |f4| and SUSY is broken. For simplicity, we set m0 = 0. We parameterize:

φ1 = veiP/v0 , φ1 = ve−iP/v0 , v0 ≡

q

v2 + v2 ,

where P is the Goldstone boson associated with the spontaneous breaking of meta-baryon

number. Note that if v = v, then C is preserved and P is indeed C-odd.



The fermion mass matrix and Yukawa couplings of the fermions to P are given by

LP = ψ11(vψ1b + vψ1) + vψ12ψ2b + vψ21ψ2

+iψ11(vψ1b − vψ1)P/v0 + i(vψ12ψ2b − vψ21ψ2)P/v0 + h.c. ,

where ψij ≡ ψMij , ψi ≡ ψφi, and ψib ≡ ψφi
. If v = v, one easily verifies that

the fermion mass matrix and interactions are C-conserving. One can choose fermion

mass eigenstates that are eigenstates of C. In four-component spinor notation, one easily

verifies that the fermion spectrum consists of three Dirac fermions [charged with respect

to an unbroken U(1)] and two neutral Majorana fermions, and P couples off-diagonally to

fermion–antifermion pairs.

If v 6= v, then C is spontaneously broken in the metastable vacuum. The three Dirac

fermions are no longer eigenstates of C:

Ψ11 =

 

ψ11

χ+

!

, Ψ12 =

 

ψ12

ψ2b

!

, Ψ21 =

 

ψ21

ψ2

!

,

where χ± ≡ (vψ1b ± vψ1)/v0.



The corresponding P interactions are:

LPΨΨ = P
h

1
2iv0Ψ−(1 − γ5)Ψ11 + h.c.

i

− iP
h

vΨ12γ5Ψ12 − vΨ21γ5Ψ21

i

,

where Ψ− is the massless four-component Majorana fermion corresponding to χ−. The

first term above exhibits the fact that P is also spontaneously violated. The second term

shows the existence of diagonal pseudoscalar couplings of P to (a subset of the) fermion

pairs. That is, P is now a linear combination of JPC = 0+− ⊕ 0−+.

One can exhibit the shift symmetry of the PNGB field more explicitly by redefining:

ψi = ψ̃ie
−iP/v0 , ψib = ψ̃ibe

iP/v0 ,

which absorbs all factors of P from the mass and PNGB interaction terms. Of course, the

PNGB terms reappear in the kinetic energy terms, e.g.:

ψ
†
2σ

µ
ψ2 =

i

v0

ψ̃
†
2σ

µ
ψ̃2∂µP .

We can recover the previous non-derivative forms by integrating by parts and employing

the free field equations. Of course, the results derived above also determine whether ∂µP

can couple diagonally to fermion pairs.



Coupling the PNGB to the SM sector

Since the ISS quarks carry electroweak quantum numbers, P can couple to

the SM sector via the generic diagram:

P

Q

Q

Q

corresponding to the dimension-5 operator:

Leff ∼
1

ΛISS
PFµνaF̃ aµν ,

as long as diagonal couplings PQQ are present, which requires C-breaking

as exhibited above.



PNGB Yukawa couplings to SM fermions

Consider first the coupling of PNGB to quarks via QCD interactions:

∂µP

Q

Q

Q Q

Q

Q

QγµQ

The diagonal couplings of ∂µP to ISS quarks exist only if C is spontaneously

broken. However, the QCD interactions preserve C, so we can use Furry’s

theorem to conclude that the right hand triangle vanishes (after adding

up two diagrams, in which the quarks circulate in opposite directions).

Three gluon exchange also vanishes, as the C properties of the diagram

would imply an antisymmetric three-gluon state on the left and a symmetric

three-gluon state on the right, summed over the adjoint gluon indices.

Hence, no Yukawa couplings can be generated via gluon exchange.



Next, consider PNGB Yukawa interactions mediated by the electroweak
sector.

∂µP

Q

Q

Q

W+

W−

W3

FL

FL

FL γ
µτ3FL(a)

∂µP

Q

Q

Q FL

FL

FL

FLγ
µ

(

1

τ3

)

FL

W+

W−

(b)

∂µP

Q

Q

Q FL

FL

FL

FLγ
µ

(

1

τ3

)

FL

W3, B

W3, B

(c)

∂µP

Q

Q

Q fR

fR

fR

fRγ
µfR

B

B

(d)

Electroweak contributions to the PNGB–fermion couplings. FL ≡ (uL , dL) in the case of a left-handed quark doublet,

FL ≡ (νL , eL) in the case of a left-handed lepton doublet, and fR is the right-handed quark or charged lepton singlet (with

generation indices suppressed). In (c), couplings to triplet currents appear only in the mixed W3–B box diagrams.



Again, we require spontaneous C-breaking in the ISS sector so that ∂µP couples diagonally

to the ISS quarks. However, P and C are also violated in the electroweak sector, so that

all the diagram exhibited contribute.

Consider first the flavor-conserving Yukawa couplings. For simplicity, set the CKM matrix

to unity. Moreover, as g2 > g1, we will keep only the leading contribution that is

proportional to α2
2. The loops are dominated by the ISS scale, hence we expect an

effective operator of the form:

α2
2(ΛISS)

ΛISS

fγµ(1 − γ5)f∂µP .

Integrating by parts and using the free field equations then yields the desired Yukawa

coupling:

LPff ∼
α2

2(ΛISS)mf

ΛISS

ifγ5f P .



Next, we examine the flavor-changing Yukawa coupling, which can arise from:

∂µP

Q

Q

Q FL

FL

FL

FLγ
µ

(

1

τ3

)

FL

W+

W−

Inserting the factors of the CKM matrix V at the two W vertices of the right-hand

triangle, we note that if the quark masses were degenerate one would produce a factor

of V †V = 1. Thus, we have a GIM suppression. Treating the quark masses in the

mass-insertion approximation, one needs two mass insertions to obtain a flavor-changing

coupling. This yields a suppression factor of ∆m2
q/Λ

2
ISS. The top quark in the loop

should dominate, and the resulting effective operator for dsP is:

α2
2

Λ3
ISS

m
2
tVtdV

∗
tsdγ

µ
(1 − γ5)s ∂µP .

Integrating by parts yields the desired Yukawa coupling:

LdsP ∼
α2

2m
2
tVtdV

∗
tsms

Λ3
ISS

(idγ5sP + h.c.) .



Constraints from K± → π±P

We compute the decay width for s → dP . The effective Yukawa coupling is

λ ∼
α2

2m
2
tVtdV

∗
tsms

Λ3
ISS

∼ 2 × 10−13

„

2 TeV

ΛISS

«3

,

where I have used α2
2 ∼ 10−3 and |VtdVts| ∼ 3 × 10−4. Thus, for ΛISS = 2 TeV,

Γ(s → dP) =
λ2ms

64π2
∼ 7 × 10−30 GeV .

If we crudely use this result for Γ(K± → π±P), then we would obtain the predicted

branching ratio by dividing out by the total decay width, Γ(K) ∼ 5 × 10−16 GeV. Thus,

we would expect:

BR(K
±
→ π

±
P) ∼ 10

−14

„

2 TeV

ΛISS

«6

,

which should be compared with the current experimental bound of 6 × 10−11.



Constraints from Υ → γP

If V is a 3S1 quarkonium bound state of QQ, and if the PQQ coupling is

given by λQmQiQγ5QP, then a tree-level computation yields:

Γ(V → γP)

Γ(V → e+e−)
=
λ2
Qm

2
V

8πα
.

We have estimated λQ ∼ α2
2/ΛISS. Hence, using BR(Υ → e+e−) = 2%,

we find:

BR(Υ → γP) ∼ 2 × 10−12

(
2 TeV

ΛISS

)2

.

which is many orders away from experimental bounds. The corresponding

branching ratio for ψ → γP is about a factor of three smaller.



Constraints from Astrophysics

1. The neutrino mass is nonzero, so it too will have a Yukawa coupling to P given by

λννP ∼
α2

2mν

ΛISS

∼ 10
−17

„

2 TeV

ΛISS

«

.

This leads to a new energy loss mechanism for supernovae. Neutrinos trapped in the hot

plasma can bremsstrahlung the very weakly interacting PNGBs, which transport energy

out of the star. However, the coupling is too small for this to be a significant effect.

2. The electron Yukawa coupling λeeP can be similarly estimated. We write this in the

form αP ≡ λ2
eeP/4π:

αP ∼ 10−20

„

2 TeV

ΛISS

«

.

The actual observational bound of Raffelt and Weiss for the coupling of a light spin

zero boson to electrons is αa < 0.5 × 10−26, assuming that the boson is light enough

to be produced in the star, by Compton scattering or by bremsstrahlung, and that is

subsequently escapes. This constraint would rule out models of the type considered in this

talk if mP <∼ 104—105 eV .



Conclusions

• Metastable SUSY-violation may be a critical ingredient for constructing

theories of fundamental SUSY-breaking. In ISS-type models, one typically

finds a spontaneously-broken meta-baryon number symmetry (with small

explicit-breaking effects from very high scales). This leads to a light

pseudo-Nambu-Goldstone boson, P.

• P is a CP-odd, C-odd scalar. If C and P are spontaneously broken in

the metastable vacuum, then it is possible for P to couple diagonally to

ISS-quarks. Assuming that these quarks also possess SM gauge quantum

numbers, interactions of P with SM particles are generated.

• The only significant phenomenological constraint that we can find are

from astrophysical limits on the energy loss mechanism of red giants.

This constraint imposes a lower bound on the PNGB mass, which places

restrictions on the parameters of the SUSY-breaking model.


