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Minimal Gauge Mediation

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)
+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:( |y2〈S〉|2 −y∗2〈F ∗

S〉
−y2〈FS〉 |y2〈S〉|2

)
(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [142] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of
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Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]
, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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W = λ′Xφ̃φ

X = 〈X〉 − θ
2
F m

2

φ =

(
λ′2〈X〉2 λ′F

λ′F λ′2〈X〉2

)
m

2

ψφ
= λ

′2〈X〉2

M
(r)
λ

=
α(r)

4π

F

X

m
2
f = 2

3∑
r=1

C
r
f

(
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4π

)2
|F |2
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The mu-Problem in MGM

 2) EWSB in MGM demands: 

Therefore it is natural to expect a Dynamical origin to the 
mu-term connected to SUSY Breaking

µ ∼ TeV

W = µHDHU

Gauge Mediation requires some extension to explain this

 1) Gives mass to Charginos m
χ
±

1

> 105GeV



mu/B
Actually this is the “mu/B” Problem: often mu is easy to get 

but B is too big

Stability Requires

Gauge Mediation is incomplete and requires an extension

X = 〈X〉 − θ
2
F

W = ηXHDHU µ = η〈X〉 << B = ηF

B

µ
=

F

X
∼ 100TeV

m2

HU
+ m2

HD
+ 2µ2 > 2B



“Little Hierarchy”  in MGM

mẽR
> 73GeV → msq > 750GeV

m̃squark

m̃slepton

∼

(
4

5

) 1

2 g
2
3

g2
1

∼ 10.2

δm2

HU
= −

3y2
t

4π2
m2

t̃
ln(λ′〈X〉/mt̃) < −(600GeV)2

Automatic Hierarchy

Experimental Bounds

Radiative Corrections

EWSB
m2

Z

2
=

m2

HD
− m2

HU
tanβ2

tanβ2
− 1

− µ2

µ
2

> (600GeV)2 T =
µ2

m
2

Z

2

∼ 89 → 1% Tuning



A “Little Hierarchy” Relief

“Squashing” the sparticle spectrum is needed for lighter stops

msq ∼

g
2
3

16π2
Λq

msl ∼
g
2
1

16π2
Λ!

msq

msl
∼

g
2
3

g2
1

(
Λq

Λ!

)
∼ 3

msq

msl
∼

g
2
3

g2
1

(
Λq

Λ!

)
∼ 3

This fits into the broader framework of “General Gauge Mediation”

“two-parameter Model” with Non-Minimal Messengers

Meade, Seiberg, and Shih 08

W = (λ1X1 + λ2X2)φ̃φ

S. Martin 98



Solving the mu Problem (NMSSM) 

W = λNHDHU −

κ

3
N

3

FN

〈N〉
∼ 1TeV

N is not the origin of 
Messenger mass 

λ〈N〉 = µ

λFN = B

V
(soft) = m

2
N |N |2 + [λAλNHDHU −

κ

3
AκN

3 + h.c.]

Renormalization does not lead to stable vacuum 

Again, more Dynamics needed to make this work.

Murayama, Friedland, and de Gouvea 98

Ellis, Gunion, Haber, Roszkowski, Zwirner  89



Direct Couplings
Delgado/Giudice/Slavich (07)

W = X(φ̃1φ1 + φ̃2φ2) + ξN φ̃2φ1

m2

N = −

16g2
3ξ2

(16π2)2

∣
∣
∣
∣

F

X

∣
∣
∣
∣

2

3Aλ = Aκ ∼

−5ξ2

16π2

∣
∣
∣
∣

F

X

∣
∣
∣
∣

µ ∼ 5TeV

Still need heavy stops to lift Higgs mass



Re-thinking the mu problem in N-MGM 

Messenger-Singlet Interactions induce positive 1-loop mass^2.
Dvali, Giudice, Rattazzi (96)

m2

N =
ξ2

(16π2)
(Λ1 − Λ2)

2g(x)W = ξN φ̃2φ1

The NMSSM Singlet does NOT get a VEV in this way in Non-
Minimal Gauge Mediation. 

Delgado/Giudice/Slavich (07)



W = λNHDHU → L ∼ λ
2|HDHU |

2

Large Quartic coupling

m2

Higgs = m2

Z cos
2
2β + λ2v2

sin
2
2β

m
(tree)
Higgs > 114GeV

Nomura, Tweedie, Poland (06)

Need:

However, in the NMSSM κ〈N〉 ∼ mn

〈N〉 # mn



Two-Singlet Model

+λNHDHU −

κ

3
S

3

W = ηnN φ̃2φ1 + ηsSφ̃1φ2

7 Parameter Model

(
ηs, ηn, λ, κ,Λq,Λ!,

M1

M2

)



V
(soft) = m

2
N |N |2 + m

2
S |S|

2 + [bSN − λAλNHDHU −
κ

3
AκS

3 + h.c.]

(
m2

N , m2

S , b, µ̃, Aλ, Aκ

)

W = λNHDHU −

κ

3
S3

+ µ̃SN

Integrating out the messengers

(
ηs, ηn, λ, κ,Λq,Λ!,

M1

M2

)
Soft terms given by UV parameters:



Mixings

ε =
ηs

ηn

< 1 m
2 =

η
2
n

(16π2)
Λ2

(
N

S

)(
N S

)(
m

2
εm

2

εm
2

ε
2
m

2

)

Now we can decouple the Singlet with small mu term
if epsilon is small

ε = .1Take:

〈N〉 ∼
mε2

κ
$ mn ∼ m



1) 4 CP-even Higgs (
B = λAλ − λµ̃s −

λ2v2

2
sin 2β

)

(
ηs, ηn, λ, κ,Λq,Λ!,

M1

M2

)
6 Soft Parameters

tanβ =
vu

vd
, mhiggs, µ term

2) 3 CP-odd Higgs

3) 6 Neutralinos

4) Minimization conditions determine kappa

mχ0

1
∼ 43 − 53 GeV

BR(h0
→ bb̄) < 0.1

Model Properties

(
0.1 ηn, ηn, 0.7, κ, 15 TeV, 80 TeV,

1

2

)
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FIG. 5: mh0 as a function of ηn. The Green (dark shaded) region indicates the range of ηn where

mh0 > 114.4 GeV

supersymmetric mass in order to increase the negativity of the beta function of λ from gauge

interactions. This could also be accomplished by simply putting a flavor index on the two

sets of vector-like Messengers. Since our notation up until this point has only assumed one

set of Messengers participating in the SUSY breaking we will specifically consider the case

where the extra Messengers are merely spectators, not participating in any of the threshold

SUSY breaking interactions. However we expect the two situations give approximately

equivalent results. Strictly speaking, our results will only apply to the case where the extra

two vector-like chiral fields are spectators, having a supersymmetric mass like φ̃2φ2 but with

no other relevant interactions in the theory. We will consider the Messenger number: N = 4.

We emphasize that the extra two Messengers serve no purpose other than contributing to

the renormalization of λ.

In this model, our Benchmark parameters are:

Λ(λ)
" = 80 TeV, Λ(λ)

q = 15TeV,
η(D)

s

η(D)
n

= 0.1, λ = 0.7, x = 0.5, Λ(κ)
q = Λ(κ)

" = 0 η(T )
n = 0

(84)

For this set of parameters the values of the lightest CP-even Higgs mass , tan β, and µ

are shown in Figure 5, Figure 6, and Figure 7.

From Figure 5 and Figure 6, we see that this model admits a sizable region of parameter

space where mh0 > 114.4 GeV. In this case ηn = [0.41, 0.51]. Figure 8 reveals that this

model has a small µ term: µ = [125 GeV, 300 GeV]. In order to get a better sense of the
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FIG. 6: tan β as a function of ηn. The Green (dark shaded) region indicates the region of ηn where

tan β < 1.9 which corresponds to λGUT
4π < 0.3
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FIG. 7: µ as a function of ηn. µ = [100 GeV, 325 GeV] in the region of allowed parameter space
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FIG. 8: The Blue (dark shaded) region indicates the allowed ηn as a function of Λ# for which

mh0 > 114.4GeV. The Green (light shaded) region indicates the allowed ηn as a function of Λ#

for which mh0 > 110GeV. Here the other parameters are the ame as in the Benchmark point. As

Λ# = [60 TeV, 110 TeV] msq = [320 GeV, 370 GeV]
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mHiggs > 114.4 GeV

λGUT

4π
< 0.3

ηn = [0.41, 0.51]



Small mu term
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µ = [120 GeV, 300 GeV]



Parameter Space
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FIG. 4: The region of allowed ηn as a function of Λ!. Here the other parameters are the same

as in the Benchmark point. The Blue (dark shaded) region is where mh0 > 114.4 GeV and

the Green (light shaded) region is where mh0 > 110 GeV. As Λ! = [70 TeV, 95 TeV] msq =

[360 GeV, 400 GeV]

related to Renormalization. The first is that in the previous model, there were only N = 2

flavors of Messengers. Adding chiral matter to the theory causes the gauge couplings to

become larger at the GUT scale, this slows the RGE running of λ towards a Landau Pole

in the UV and permits a large value for λ(mZ) while maintaining λ(MGUT )
4π

< 0.3. For N = 2

Messengers the contribution of the new chiral matter to the gauge coupling RGE is still quite

small. The second effect reducing the parameter space is that the GUT relations imply that

η(T )
n (mZ) > η(D)

n (mZ). This is due to the tendency of the triplet have a more negative beta

function than that of the doublet. The presence of a large triplet coupling makes the beta

function for λ more positive and therefore makes a large value for λ(mZ) more difficult to

achieve. Also, since we are also working with Λq < Λ! we find that it is difficult to make

the Aλ term, and thus the Bµ term, large enough to get a small tanβ when there are GUT

relations between couplings. This reduces the parameter space where the Higgs is heavier

that 114.4 GeV.

We can improve these problems with the following scenario. Let us assume that there are

two vector-like pairs of Messengers as in the previous model, but let the doublet and triplet

couplings be completely independent. In principle this could originate from a mechanism

similar to the mechanism that is responsible for making the Higgs triplets heavy. Now we can

turn off all of the triplet-Singlet couplings, setting η(T )
n (mZ) = η(T )

s (mZ) = 0. Since η(D)
n (mZ)

contributes less to the positivity of λ’s beta function and generates Aλ via Λ!, λ(mZ) can

be larger in such models. We also add two additional vector-like pairs of Messengers with a
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GUT Relations

No GUT Relations

tune: 3%

tune: 15% 

Λq = 15 TeV

Λ! = 17.5 TeV



sign of mu anti-correlated with gaugino mass

B-term comes from A-term: unsupressed

large quartic allowed due to second Singlet

Stability Bound on kappa better than NMSSM

Things that work out well



Conclusions
small mu, light stops, Higgs above LEP bound 
are possible in Non-Minimal Gauge Mediation.

Mixing can boost NMSSM’s quartic 
corrections to the Higgs mass. 

Deviations from the 2 parameter model could 
change the situation. 

“Little Hierarchy” is less severe in these 
scenarios.  








