More on SUSY Gauge-Higgs Unification

Felix Brümmer IPPP

based on work in progress with Sylvain Fichet, Sabine Kraml (LPSC Grenoble) and Arthur Hebecker (Heidelberg)

Implications of GHU relations

Notation:
$$m_1^2 \equiv |\mu|^2 + m_{H_1}^2$$
, $m_2^2 \equiv |\mu|^2 + m_{H_2}^2$, $m_3^2 \equiv B\mu$.
GHU relations

$$m_1^2 = m_2^2 = \pm m_3^2$$

hold at GUT/compactification scale $\approx 10^{16}$ GeV.

For stable Higgs potential with EWSB, need

$$m_1^2 m_2^2 - m_3^4 < 0$$

 $m_1^2 + m_2^2 - 2m_3^2 > 0$

(EWSB)

(D-flat directions stabilized)

at minimization scale $M_{\rm soft} \approx 1 \, {\rm TeV}$

(where $m_3^2 > 0$ by convention).

RG running will have to do this.

RG evolution of Higgs mass parameters

Generic behaviour:

- m_1^2 does not change significantly (at most by an O(1) factor)
- *m*²₂ runs negative towards low energies (→ radiative EWSB) due to large top Yukawa

m²₃?

For fully realistic MSSM vacua (Higgs mass above LEP bound) need

• $\tan \beta \gtrsim 5$ (to be close to tree-level Higgs mass bound)

• Small M_Z/M_{soft} (for large stop loop corrections to Higgs mass) Roughly implies

•
$$m_3^2 \ll m_1^2$$
 at M_{soft} (using $m_1^2(M_{\text{soft}}) \simeq M_{\text{soft}}^2$)
• $|m_2^2| \ll m_1^2$
since $\tan \beta + \cot \beta = \frac{m_1^2 + m_2^2}{2m_3^2}$, $\frac{M_Z^2}{2} = (m_2^2 - m_3^2 \cot \beta) / \cos 2\beta$

Numerical results

More on SUSY Gauge-Higgs Unification

One-loop RG evolution of m_3^2

$$16\pi^{2}\frac{d}{dt}m_{3}^{2} = \mu \left(\frac{6a_{t}\overline{y}_{t}}{6} + \frac{6g_{2}^{2}M_{2}}{6} + 6a_{b}\overline{y}_{b} + 2a_{\tau}\overline{y}_{\tau} + \frac{6}{5}g_{1}^{2}M_{1} \right) \\ + m_{3}^{2} \left(3|y_{t}|^{2} + 3|y_{b}|^{2} + |y_{\tau}|^{2} - 3g_{2}^{2} - \frac{3}{5}g_{1}^{2} \right) \\ 16\pi^{2}\frac{d}{dt}a_{t} = y_{t} \left(\frac{32}{3}g_{3}^{2}M_{3} + 6g_{2}^{2}M_{2} + \frac{26}{15}g_{1}^{2}M_{1} \right) \\ + a_{t} \left(18|y_{t}|^{2} + |y_{b}|^{2} - \frac{16}{3}g_{3}^{2} - 3g_{2}^{2} - \frac{13}{15}g_{1}^{2} \right) + 2a_{b}\overline{y}_{b}y_{t} \\ 16\pi^{2}\frac{d}{dt}M_{3} = -6g_{3}^{2}M_{3}$$

- Gluino mass M₃ grows large towards low energies
- a_t at M_{GUT} positive ($a_t = y_t M_{1/2}$) Low-energy evolution of a_t dominated by M_3 : driven negative + large
- Thus: Low-energy running of m₃² dominated by a_t, direction of running depends on sign(µ)

RG evolution of Higgs mass parameters

First possibility: $\mu > 0$

- *m*²₃ runs up at low energies
 → must run negative first
- Large μ preferred

Second possibility: $\mu < 0$

- *m*²₃ runs down eventually
 → must run positive first
- Again large $|\mu|$ preferred

But: Cannot increase $|\mu|$ arbitrarily (for fixed $m_i^2(M_{GUT})$) since too large negative $m_{H_2}^2$ prevents REWSB

Implications for model parameters

$$\mu = \overline{F}^{\varphi} - \frac{\overline{F}^{T}}{2R} \frac{1 + 2c'}{1 + c'}$$

and large

2000 2500

.....

3000

 $m_3^2(M_{
m GUT}) > 0, \, \mu$ positive and large $\Rightarrow F^{arphi} \gg F^T/2R$

$$m_3^2(M_{GUT}) < 0, \mu$$
 negative, $|\mu|$ large $\Rightarrow F^{\varphi} \ll F^T/2R$ (or negative)

LHC predictions

- At low $M_{1/2}$, mass difference between χ_1^0 and NLSP small
- χ⁰₂ (almost always) heavier than *e*_{1,2} and *τ*₁

LHC predictions

- Mass difference between χ_1^0 and NLSP small
- χ^0_2 heavier than $\tilde{e}_{1,2}$ and $\tilde{\tau}_1$
- χ_2^0 produced abundantly in squark decays

 \rightarrow Decays $\chi_2^0 \rightarrow \ell^{\pm} \tilde{\ell}^{\mp} \rightarrow \ell^{\pm} \ell^{\mp} \chi_1^0$ kinematically allowed, large BR "Same-flavour-opposite-sign" dilepton signature, allowing sparticle mass reconstruction through kinematic endpoints:

Cosmological constraints

- Small slepton-neutralino mass difference good for DM relic density: slepton-neutralino coannihilation
- Here: mass difference small enough only for $M_{1/2} \lesssim 400~{
 m GeV}$
- ⇒ Significant fraction of parameter space ruled out by WMAP (assuming standard cosmology): low enough relic density for dark blue points

 Expect this to improve with realistic sfermion boundary conditions numerical analysis pending

Concluding remarks

- Phenomenology similar to "Higgs-exempt no-scale models" (→ Evans, Morrissey, Wells '06)
- also similar: F-theory models
- (→ Aparicio, Cerdeño, Ibáñez '08)
- and even certain regions of mSugra parameter space (small m₀)
- No "smoking gun" signature for GHU
 - but still predictions which can be falsified (or confirmed)

Outlook:

- Realistic boundary conditions for sfermions in progress
- Interesting future direction: what changes in GHU orbifold GUTs from heterotic string models?

LHC will have the final word.