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Introduction
Duality between two objects in N=4 Super Yang-Mills:
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Gluon amplitudes = Wilson loops

Vast simplification of the computation of amplitudes

Example
We compute all MHV 2-loop gluon scattering amplitudes
(assuming the conjectured duality) for any n.
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1 The duality
The evidence so far...
Wilson loop calculations - 1 loop
Wilson loop calculations - 2 loop

2 Results of two-loop computations
6 points
7 points
8 points

3 Dual superconformal symmetry of the entire S-matrix
at tree level
at one loop
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MHV amplitudes

Colour-stripped planar L− loop MHV amplitudes A(L)
n

L-loop amplitude
A(L)

n = Atree
n M

(L)
n (pi)

M(L)
n is a scalar function of the external momentum pi only.

In the first part of this talk we will focus onM(L)
n for the MHV

amplitude
Amplitudes are infrared divergent: we regularise by
dimensional regularisation and work in d = 4− 2ε
dimensions
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L-loop amplitude
The BDS conjecture [Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005]

The BDS formula: an all-loop expression for any n

log
(
Mn(ε)

)
=

∞∑
L=1

aL
(

f (L)
A (ε)M(1)

n (Lε) + C(L)
)

+ O(ε)

‘a’ is the ’t Hooft coupling

Here f (L)
A (ε) = f (L)

0 + f (L)
1 ε+ f (L)

2 ε2 where f (L)
i is a number.

needs modification from n = 6 points...
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Amplitude/Wilson loop duality
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amplitudeMn ‘=’ 〈W [Cn]〉
(d = 4− 2ε) (d = 4 + 2ε)

Wilson loop over the polygonal contour Cn

W [C] :=
1
2

TrP exp
[
ig
∮
C
dτ
(

Aµ(x(τ))ẋµ(τ)
)]
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Evidence so far...

amplitude calculated at strong coupling

of loops

654 87 infinity

Number of points n

1

2

3

infinity

4

(using string theory via AdS/CFT correspondence)

[Alday, Maldacena 2007]

amplitude=Wilson loop

Number
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Evidence so far...

[Drummond Korchemsky Sokatchev 2007]

Number

of loops

654 87 infinity

Number of points n

1

2

3

infinity

4

4−points 1 loop Wilson loop = amplitude
[Green, Schwarz, Brink 1982]
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Evidence so far...

[Bern Dixon Dunbar Kosower 1994]

of loops

654 87 infinity

Number of points n

1

2

3

infinity

4

1−loop, all n, Wilson loop = amplitude
[Brandhuber Travaglini PH 2007]

Number
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Evidence so far...

[Bern Rosowsky Yan 1997]

Number

of loops

654 87 infinity

Number of points n

1

2

3

4

infinity

2−loops, 4 points, Wilson loop = amplitude

[Drummond, Henn, Korchemsky, Sokatchev 2007]
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Evidence so far...

infinity

Number

of loops

654 87 infinity

Number of points n

1

2

3

4

(2−loop, 5−pt) 

Dual conformal symmmetry (4,5 points all loops) 

Wilson loop = amplitude

[Drummond, Henn, Korchemsky, Sokatchev 2007]

Bern Czakon Kosower Roiban Smirnov 2006]
[Cachazo Spradlin Volovich 2006, 

}
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Dual conformal invariance
[Drummond Henn Korchemsky Sokatchev 2007]

4-, 5-point Wilson loop is completely determined by
conformal symmetry as the ABDK/BDS conjecture

log
(

Wn(ε)
)

=
∞∑

L=1

aL f (L)
W (ε)W (1)

n (Lε) + Cw(a) + O(ε)

⇒ the 4-,5-point amplitude determined similarly by new
conjectured symmetry ‘dual conformal symmetry’

log
(
Mn(ε)

)
=

∞∑
L=1

aL f (L)
A (ε)M(1)

n (Lε) + CA(a) + O(ε)

beyond 5-points there might exist a non-zero conformally
invariant remainder function RW

n ,RAn
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Remainder function

n ≥ 6

log
(
Mn(ε)

)
=

∞∑
L=1

aL f (L)
A (ε)M(1)

n (Lε) + CA(a) +RAn (pi ; a) + O(ε)

log
(

Wn(ε)
)

=
∞∑

L=1

aL f (L)
W (ε)W (1)

n (Lε) + Cw(a) +RW
n (pi ; a) + O(ε)

non-zero remainder function found for the two-loop six-point
amplitude and the Wilson loop [Drummond Henn Korchemsky Sokatchev 2008,
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 2008]
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Evidence so far...

1

Number

of loops

R
W

=R
A

0

[Drummond Henn Korchemsky Sokatchev 2008]

[Bern Dixon Kosower Roiban Spradlin Vergu Volovich 2008]

(2−loop, 6−pt) Wilson loop = amplitude

654 87 infinity

Number of points n

2

3

4

infinity



university-logo

Wilson loop calculations, 1-loop

the expression for the n − point amplitude and for the WL
are very closely related:

Amplitude =
∑

p,q [Bern Dixon Dunbar Kosower 1994]

=

WL =
∑

p,q [Brandhuber Travaglini PH 2007]

P =

q−1∑
k=p+1

k Q =

p−1∑
k=q+1

k
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2-loop n-point Wilson loop (log of)
Only four new “master” integrals to be computed for all n

fH(p1,p2,p3; Q1,Q2,Q3) fY (p1,p2; Q1,Q2)

fX (p1,p2; Q1,Q2) fC(p1,p2,p3; Q1,Q2,Q3)
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( Compare with amplitude (parity even part))

n = 4

n = 5

n = 6
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n = 7 [Vergu]
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Complete 2-loop Wilson loop
The logarithm of the complete n-sided Wilson loop is given
in terms of the four new master diagrams together with the
one loop diagram fP(pi ,pj ; Qji ,Qij) as

∑
1≤i<j<k≤n

[
fH(pi ,pj ,pk ; Qjk ,Qki ,Qij) + fC(pi ,pj ,pk ; Qjk ,Qki ,Qij)

+ fC(pj ,pk ,pi ; Qki ,Qij ,Qjk ) + fC(pk ,pi ,pj ; Qij ,Qjk ,Qki)
]

+
∑

1≤i<j≤n

[
fX (pi ,pj ; Qji ,Qij) + fY (pi ,pj ; Qji ,Qij) + fY (pj ,pi ; Qij ,Qji)

]
+

∑
1≤i<k<j<l≤n

(−1/2)fP(pi ,pj ; Qji ,Qij)fP(pk ,pl ; Qlk ,Qkl)
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Comment

UV singularities (1/ε) of these diagrams depend on whether
Qi = 0 or not, ie whether legs can be adjacent

Eg fH has a
I 1/ε2 singularity if Q1 = Q2 = 0, Q3 6= 0,
I 1/ε singularity if Q1 = 0, Q2,Q3 6= 0
I finite if Q1,Q2,Q3 6= 0.
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Precise correspondence at 2 loops

Amplitude

M(2)
n (ε)− 1

2
(
M(1)

n (ε)
)2

= f (2)
A (ε)M(1)

n (2ε) + C(2)
A +RAn (pi)

Wilson loop: our definition of the WL remainder

W (2)
n (ε)− 1

2
(
W (1)

n (ε)
)2

= f (2)
W (ε)W (1)

n (2ε) + C(2)
w +RW

n (pi)

Note from now on RAn (pi), RW
n (pi) will denote the two-loop

remainder functions
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The correspondence

RA
n = RW

n

DHKS definition contained a previously unknown constant
shift
f (2)
2,W and C(2)

W (and hence RW
n ) are uniquely defined by

writing the 4- and 5- sided WL (for which RW
n = 0) as

after correction of a constant in the two-loop four-point result of DHKS

w (2)
4 (ε) = f (2)

W (ε) w (1)
4 (2ε) + C(2)

W ,

w (2)
5 (ε) = f (2)

W (ε) w (1)
5 (2ε) + C(2)

W ,

f (2)
W (ε) = −ζ2 + 7ζ3 ε − 5ζ4 ε

2 C(2)
W = −1

2
ζ2

2

cf f (2)
A (ε) = −ζ2 − ζ3 ε − ζ4 ε

2 C(2)
A = −1

2
ζ2

2
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Computations at n = 6,7,8...
Using the numerical techniques of [Anastasiou Beerli Daleo (2007,2008),
Lazopoulos Melnikov Petriello (2007), Anastasiou Melnikov Petriello (2005)] we
compute the 2-loop master integrals

Computations of WL performed for n = 4,5,6,7,8→
considerable amount of data collected.

Verified that the remainder function is conformally invariant
as shown by DHKS and that it has cyclic and “parity”
symmetry

We have verified that the the WL does not care about the
Gram determinant constraint on pi .pj

⇒ n(n − 3)/2 independent kinematic invariants, of which
the remainder function depends on n(n − 5)/2 independent
on-shell conformally invariant cross-ratios
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Basis of cross-ratios

uij =
x2

ij+1x2
ji+1

x2
ij x2

i+1j+1

here xi are the positions of the vertices of the WL ie
xi − xi+1 = pi
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Hexagon computations

3 cross-ratios

u36 =
x2

31x2
46

x2
36x2

41
:= u1 , u14 =

x2
15x2

24

x2
14x2

25
:= u2 , u25 =

x2
26x2

35

x2
25x2

36
:= u3

remainder function→ R(u1,u2,u3)
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6-pnt Wilson loop

RW
6 with u1 = u, u2 = v , u3 = w

w = 1 blue, w = 10 green, w = 100 yellow, w = 1000
orange, w = 10000 red
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Plot of R6(u,u,u)
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Plot of R6(u,u,u)



university-logo

Seven-point results
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Plot of R7(u,u,u,u,u,u,u)
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Plot of R7(u,u,u,u,u,u,u)
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Plot of R7(u,u,u,u,u,u,u)
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Collinear limits

pn−1 → zP, pn → (1− z)P

unmodified ABDK/BDS conjecture for the amplitude has the
correct simple collinear limits
Therefore Rn(u) must have trivial simple collinear limits

Rn → Rn−1

We verify this for n = 6,7,8 (with no constant shifts)
Makes predictions for DHKS limits

RWL
n = RDHKS

n − nπ4/48 RDHKS
6 → π4/8 = 12.1761..

In more detail for 7-points...
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Exactly the same constraint as the single collinear limit
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Eight points
20 kinematic invariants:
12 cross-ratios: uii+3 i = 1..8 uii+4 i = 1..4
Unlike 6,7 points we can not write
kinematic invariants = two-particle invariants + cross-ratios
cross-ratios depending only on two-particle invariants

x2
13x2

57
x2

35x2
71

Instead simply choose 8 simple- and multi-particle
invariants independent of the u’s to fix

(m1,m2, . . . ,m8) = x2
i+5 i+8, x2

i i+4 , i = 1, . . . ,4 ,
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Check conformal invariance: uij = 1

(m1, . . . ,m8) RWL
8

(−1,−1,−1,−1,−1,−1,−1,−1) -4.603
(−2,−2,−2,−2,−2,−2,−2,−2) -4.602
(−1,−2,−4,−8,−1,−2,−4,−8) -4.605
(−5,−3,−5,−3,−1,−3,−5,−7) -4.605

Check conformal invariance:
u = (2,3,4,1/2,1/3,1/4,1/5,1,1/5,1/6,1/7,1/8)

(m1, . . . ,m8) RWL
8

(−2,−3,−4,−1,−5,−6,−7,−8) 5.993
(−1/3,−1/4,−1/9,−1/2,−1/8,−1/7,−1/6,−1) 5.984
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Also checked collinear limit at 8 points
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Summary of WL results

Summary: the number of distinct integrals one needs to
evaluate the 2-loop n-gon WL is independent of n

We can compute all n-sided polygonal light-like Wilson
loops at two loops

Assuming the amplitude/Wilson loop duality continues to
hold, we can compute two-loop planar MHV amplitudes for
any number of points

We have computed these for 6,7,8 points and performed
some non-trivial tests (eg colinear limits and dual conformal
invariance.)
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[Anastasiou Brandhuber Khoze Spence Travaglini PH]

Number

of loops

654 87 infinity

Number of points n

1

2

3

4

infinity

WW

two−loop Wilson loop computed for all n
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Dual superconformal symmetry of the entire
S-matrix:
[Drummond Henn Korchemsky Sokatchev]

So far we have considered MHV amplitudes only

What about other helicities, other particles?

What about the MHV tree-level
amplitude?[Drummond Henn Korchemsky Sokatchev 2008]

Superconformal transformations?

Conjecture [Drummond Henn Korchemsky Sokatchev]
An = An,MHV R R is dual superconformally invariant
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Dual symmetry at tree-level
[ Brandhuber Travaglini PH]

Use the BCFW recursion relation [Britto Cachazo Feng Witten 2005]
Superspace version:
[Bianchi Elvang Freedman, Arkani-Hamed Cachazo Kaplan, Brandhuber Travaglini PH]

dual superconformal covariance at tree level
Proof by induction using superBCFW[ Brandhuber Travaglini PH]

each individual BCFW diagram is separately covariant
Solution to the recursion relation [Drummond Henn]
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Dual superconformal symmetry at one loop
What can we say at one loop?
All one loop amplitudes written in terms of
boxes [Bern Dixon Dunbar Kosower 1994]

A1−loop =
∑
{i,j,k ,l}

c(i , j , k , l) F (i , j , k , l)

F (1,2,3,4) =

∫
dDx5

(2π)D

√
R

x2
51x2

52x2
53x2

54
where

√
R → x2

13x2
24 − x2

23x2
41

x
4

x
1

x
2

x
3

x
2

x
4

x
3

x
2

x
1

x
3

x
2

x
4

x
1

x
3

x
2

x
4

x
1
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The box coefficients c(i , j , k , l) can be calculated from
tree-level amplitudes using quadruple
cuts [Britto Cachazo Feng 2005]

Supercoefficients are dual superconformal covariant
[ Brandhuber Travaglini PH, Drummond Henn Korchemsky Sokatchev]



university-logo

New constraints on box supercoefficients
To appear soon [ Brandhuber Travaglini PH]

So far we have considered tree amplitudes and one loop
box supercoefficients which are IR finite
Now we use anomalous dual conformal transformation to
find new constraints on box coefficients

Anomalous dual conformal transformation
[Drummond Henn Korchemsky Sokatchev 2008]

K µA1−loop
n = −2εAtree

n

n∑
i=1

xµi+1x2
i i+2 J(x2

i i+2)

J(x2) :=
1
ε2

(−x2)−ε−1 J(x2, y2) :=
1
ε2

(−x2)−ε − (−y2)−ε

(−x2)− (−y2)

are 1-mass and 2-mass triangles.
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Approach: perform dual conformal transformation on generic
box:

K µF ∼ 4ε
∫

dDx5

(2π)D

√
R

x2
51x2

52x2
53x2

54
xµ5

Evaluate RHS via PV reduction

x
4

x
1

x
2

x
3

x
2

x
4

x
3

x
2

x
1

x
3

x
2

x
4

x
1

x
3

x
2

x
4

x
1
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Dual conformal transformation of boxes



university-logo

transformation of 1 loop amplitude

K µA1−loop
n =

∑
{i,j,k ,l}

c(i , j , k , l) K µF (i , j , k , l)

= ε
∑
i,k

E(i , k) ×
[
xµi−1 x2

ik J(x2
ik , x

2
i−1 k)− xµi x2

i−1 k J(x2
ik , x

2
i−1 k)

]
= − 2εAtree

n

n∑
i=1

xµi+1x2
i i+2 J(x2

i i+2)

the combinations of two-mass and one-mass triangles
appearing in the middle line are linearly independent for
different i , k ⇒
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box coefficient constraints

E(i , i − 2) ≡ −E(i − 1, i) = −2Atree
n , i = 1 . . . n ,

E(i , k) = 0 , i = 1 . . . n , k = i + 2, . . . , i − 3 .

E(i , k) :=
i+n−2∑
j=k+1

c(i , k , j , i − 1)−
k−1∑

j=i+1

c(i , j , k , i − 1) ,

these give n(n − 4) independent constraints on the box
coefficients
they determine the 1-mass, 2-mass easy and half of the
2-mass hard coefficients (in terms of the other 2mh and the
3m coefficients).
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Compare with IR consistency
[Giele Glover 1992, Kunszt Signer Trócsányi 1994]

A1−loop
n |IR = −Atree

n

n∑
i=1

(−x2
ii+2)

−ε

ε2 ,

equate the coefficients of the two-particle and multi-particle
infrared divergent terms

(−x2
ii+2)

−ε/ε2 : E(i , i + 2) + E(i + 2, i)− E(i + 3, i) = −2Atree ,

(−x2
ik)
−ε/ε2 : E(i , k) + E(k , i)− E(i + 1, k)− E(k + 1, i) = 0

n(n − 3)/2 equations: determine the 1m and 2me boxes in
terms of the rest[Bern Dixon Kosower 2004]
conformal equations: also gives half of the 2mh coefficients
conformal equations are simpler
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combination of infrared equations [Roiban Spradlin Volovich 2005]

i+n−3∑
j=i+1

i

x

jx

xi−2x

i−1

= 2Atree
n

appears in the BCF context
somewhat complicated to prove from IR
equations[ Arkani-Hamed Cachazo Kaplan]
naturally appears as simply

E(i , i − 2) = −2Atree
n
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NMHV dual conformal invariance

BDK computed the NMHV one-loop n-point gluon
amplitudes[Bern Dixon Kosower 2004]

DHKS found all NMHV n-point amplitudes as manifesty
supersymmetric superamplitudes
[Drummond Henn Korchemsky Sokatchev 2008]

DHKS proved dual conformal invariance of these explicitly
for n = 6,7 (and also checked it for n = 8,9)

We extend these results and prove dual conformal
invariance of the NMHV superamplitude for all n
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Coefficients in terms of ‘R’
[Bern Dixon Kosower 2004, Drummond Henn Korchemsky Sokatchev 2008]

Coefficients can all be written in terms of dual conformal
covariant objects R

where Rruv is only defined for u ≥ r + 2, v ≥ u + 2
these satisfy Rr+2,s,r+1 = Rr ,r+2,s
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the RSV combination of IR equations

E(i , i − 2) ≡ −
i−3∑

u,v=i

Ri−2uv −
i−4∑

u,v=i−1

Ri−3uv = 2Atree

from this, for n odd we immediately get

n∑
u,v=3

R1uv =
n−1∑

u,v=2

Rnuv ,

(n even, use collinear limit arguments)
important identity leading to the NMHV superamplitude
(previously conjectured) [Drummond Henn Korchemsky Sokatchev 2008]
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This equation does not involve momentum conservation,
therefore it is true independent of the number of points
using cyclicity leads to

new equations

s∑
u,v=r+2

Rruv =
s−1∑

u,v=r+1

Rsuv r + 5 ≤ s ≤ r + n − 1 .

stronger than equations coming from the equality of two
inequivalent representations of the 2me coefficient
weaker equations used to prove dual superconformality for
n ≤ 9[Drummond Henn Korchemsky Sokatchev 2008]

stronger equation⇒ NMHV superamplitudes are dual
superconformal for all n
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Summary of superconformal section

Tree-level dual conformal invariance proved

supercoefficients at one loop: dual conformal invariance
proved

NMHV one loop dual conformal invariance at one loop
proved

Additional restrictions on one loop coefficients from
assuming dual conformal invariance
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Future directions
amplitude calculation at n ≥ 7-points needed![Vergu]

analytic determination of 6-pnt amplitude/Wilson loop

More direct/complete proof of dual superconformal
invariance (eg MHV diagrams)

Proof of WL/amplitude duality

Generalisations of WL to NMHV amplitudes
etc. [ Berkovitz Maldacena]

Generalisations to other theories (QCD)

Understanding the role of infinite new symmetries ( from
integrability) [Beisert Ricci Tseytlin Wolf, Berkovitz Maldacena,
Drummond Henn Plefka]
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