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Part I. Six-point NMHV
amplitudes1

1Work in progress, D. Kosower, R. Roiban, and C. V.



NMHV at one loop

The six-point, one-loop NMHV gluon amplitudes were computed
by Bern, Dixon, Dunbar and Kosower. There are three inequivalent
helicity distributions +++−−−, ++−+−− and +−+−+−.
Unlike the MHV case, for each helicity distribution there are three
spin factors.
The tree level amplitudes can be written as2
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2There are many ways to write the six-point NMHV tree amplitudes, but
this is the most natural from the point of view of going to loop level.



The B coefficients on the previous slide are given by

B1 =
is3

123

〈12〉〈23〉 [4(1 + 2 + 3)1〉 [6(1 + 2 + 3)3〉 [45] [56]
, (4)

B2 =
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〈23〉〈34〉 [1(2 + 3 + 4)4〉 [5(2 + 3 + 4)2〉 [56] [61]s234
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i 〈56〉3 [23]3

〈61〉〈1(2 + 3 + 4)4]〈5(2 + 3 + 4)2] [34]s234
,

(5)
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〈12〉〈61〉 [3(1 + 2 + 6)6〉 [5(1 + 2 + 6)2〉 [34] [45]s345
+
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i 〈45〉3 [12]3

〈34〉〈3(1 + 2 + 6)6]〈5(1 + 2 + 6)2] [61]s345
.

(6)

Similar formulas hold for the D and G coefficients.



The NMHV at one loop
Bern, Dixon, Dunbar & Kosower
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where a = g2Nc

8π2 and W i are combinations of one-mass boxes and
two-mass hard boxes (these box integrals are dual conformal).

Note that the same functions W
(1)
i appear for all the helicity

distributions. Also, W
(1)
i are invariant under the cyclic

permutation 1→ 4, 2→ 5, 3→ 6, 4→ 1, 5→ 2, 6→ 3.



Structure of the two-loop result
D. Kosower, R. Roiban, and C. V., work in progress
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The quantities W
(2)
i are scalar functions of the kinematic invariants

and are expressed in terms of two-loop dual conformal integrals,

while the quantities W̃
(2)
i are pseudoscalar (odd) functions.



The tilded spin coefficients on the previous slide are

B̃1 =
is3

123

〈12〉〈23〉 [4(1 + 2 + 3)1〉 [6(1 + 2 + 3)3〉 [45] [56]
, (13)

B̃2 = − i [1(1 + 2 + 3)4〉4

〈23〉〈34〉 [1(2 + 3 + 4)4〉 [5(2 + 3 + 4)2〉 [56] [61]s234
+
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〈61〉〈1(2 + 3 + 4)4]〈5(2 + 3 + 4)2] [34]s234
,
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〈34〉〈3(1 + 2 + 6)6]〈5(1 + 2 + 6)2] [61]s345
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(15)

The coefficients D̃ and G̃ also differ by signs from the coefficients
D and G respectively.



Recall that we had
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We also found some relations between the tilded coefficients which
don’t seem to appear in the literature

B̃1 + B̃2 + B̃3 =0, (19)

D̃1 + D̃2 + D̃3 =0, (20)

G̃1 + G̃2 + G̃3 =0. (21)

It can be shown that these relations hold exactly in the collinear
limits 1 ‖ 2, 2 ‖ 3, etc. and they can also be checked numerically.



Superspace structure

Following Drummond, Henn, Korchemsky and Sokatchev, we can
try to write a superspace expression for the two-loop NMHV
amplitudes.
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Superspace structure

Introduce a notation P (P−1) for the operator of cyclic
permutation by one unit to the right (left). Then, we have
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The two loop structure is
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By cyclic permutations we can define the quantities W
(2)
i and

W̃
(2)
i . They have similar properties to the corresponding one-loop

coefficients except for P3W̃
(2)
i =−W̃

(2)
i .

The quantities W̃
(2)
i are the hardest to compute. Compute them

numerically? Stay tuned!



DHKS form

DHKS proposed to pull out the full MHV amplitude, not only the
tree level
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At one loop, W
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i , where V
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where u1 = s12s45
s123s345

, u2 = s23s56
s234s123

and u3 = s34s61
s345s234

.



DHKS form (two loops)

At two loops, we have

W
(2)
i =M(2) +M(1)V

(1)
i +V

(2)
i , (26)

W̃
(2)
i =M̃(2) + Ṽ

(2)
i , (27)

where we used colors for the known and unknown parts.

Note that under the permutation P3 the properties of W̃
(2)
i are

simpler that those of Ṽ
(2)
i .

We can confirm that W
(2)
i and M(2) are identical at O(ε−4) and

O(ε−3).



µ integrals
For the two-loop six-point MHV amplitude there are integrals
which can not be detected by the 4D cuts but still contribute to
the divergent and finite parts of the amplitude.

Figure: The hexabox µ integral.

The integral contains∫
d4−2εp µ

2
p · · ·=

∫
d4pd (−2ε)

µp µ
2
p · · · . (28)

Its expansion in ε starts at 1
ε

.



µ integrals

For the NMHV amplitude there are seven independent coefficients
for the hexabox µ integral.

Table: Independent helicity distributions for the hexabox µ integral.



µ integrals

I We have analytic expressions for all these hexabox coefficients.

I The hexabox coefficients look very different than the B, D
and G coefficients presented above.

I Is there a link with the O(ε) one-loop NMHV integrals? The
result for NMHV at O(ε) is not known yet... A counting of
the number of coefficients suggests that the best
representation for this O(ε) one-loop NMHV amplitude could
be in terms of pentagon µ integrals obtained by collapsing the
boxes in the hexabox integrals.

I Is there a supersymmetrisation of these hexabox coefficients?



Part II. Higher-point MHV
amplitudes3

3Based on arXiv:0903.3526



History and future

I four-point one-loop, [Green, Schwarz, Brink, 1982]

I n-point one-loop MHV, [Bern, Dixon, Dunbar, Kosower, 1994]

I six-point one-loop NMHV, [Bern, Dixon, Dunbar, Kosower,
1994]

I four-point two-loop, [Bern, Rozowsky, Yan, 1997]

I five-point two-loop, [Bern, Rozowsky, Yan, 1997] [Bern,
Czakon, Kosower, Roiban, Smirnov, 2006] [Cachazo, Spradlin,
Volovich, 2006]

I six-point two-loop MHV, [Bern, Dixon, Kosower, Roiban,
Spradlin, Vergu, Volovich, 2008] [Cachazo, Spradlin, Volovich,
2008]

I five-point three-loop [Spradlin, Volovich, Wen, 2008]

I seven-point two-loop MHV (even part), [Vergu, 2009]

I n-point two-loop MHV, [?]

I six-point two-loop NMHV, [?]



Motivation

I Alday and Maldacena hinted that there could be a link
between scattering amplitudes and Wilson loops in N = 4
SYM. Subsequently this was shown to hold by explicit
perturbative computations.

I Need to catch up with the Wilson loop computations
(Anastasiou, Brandhuber, Heslop, Khoze, Spence, Travaglini).

I An understanding of the relations between the master
integrals appearing in the Wilson loop and scattering
amplitudes computations could have significant practical
consequences for the evaluation of higher loop integrals.



Cuts

Figure: Cuts used to compute the seven-point two-loop amplitude.



Integrals with zero coefficient
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Integrals with nonzero coefficient
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n-point cuts

Figure: Two n-point cuts.

By computing the even part of these cuts we can show that only a
restricted set of integrals appear.



A leg addition rule

When an MHV tree amplitude can be separated by a cut, then we
can use a leg addition rule.



A leg addition rule

Let us illustrate this by an example

C5-pt =
4s2

12s51(p(1) +k45)2

(p(1) +k45)2− (p(2) +k45)2
, C6-pt =

4s2
12s61(p(1) +k456)2

(p(1) +k456)2− (p(2) +k456)2
.



Part III. Other conformal
theories4

4Work in progress, L. Dixon, D. Kosower, and C. V.



All-order ansätze in other theories?

Study a Z2 orbifold of N = 4 SYM, which preserves N = 2
SUSY. This theory is obtained by an orbifold projection of the
SU(2Nc), N = 4 SYM.(
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0 Φ
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Then we deform the orbifolded theory by taking the couplings for
the two gauge groups to be different g 6= g ′.

g tr (Φ1 [Φ2,Φ3])→{
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+
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(31)

This is a marginal deformation preserving N = 2 SUSY. When
g = g ′ we get back the Z2 orbifold of N = 4 SYM and when
g ′ = 0 we get the N = 2 SU(Nc) gauge theory coupled to
Nf = 2Nc hypermultiplets (which is also conformal).



Color flow

Figure: One-loop color flow

Figure: Two-loop color flow



Preliminary findings for N = 2

I Different expressions for −−++ and −+−+

I 4-dimensional cuts don’t capture all the contributions;
D-dimensional cuts are necessary

I The integrals appearing are not pseudo-conformal

I Dual conformal symmetry is violated

I Uniform transcendentality is violated (appearance of ζ (3))

I The cusp anomalous dimension and collinear anomalous
dimension are the same as in N = 4 SYM (at two-loop
order). In other words, at two loops the IR divergences are
identical to the ones in N = 4 SYM.



Thank you!


