D-dimensional unitarity at work

Giulia Zanderighi Oxford University & STFC

Amplitudes '09, Durham

Based on work done with Keith Ellis, Walter Giele, Zoltan Kunszt, Kirill Melnikov

Motivation

Interest per se:

- shed light on all order properties of highly symmetric gauge theories
- ▶ insight in the structure of gauge theories in and beyond large N_c limit
- hope for a better understanding of full QCD

Motivation

Interest per se:

- shed light on all order properties of highly symmetric gauge theories
- ▶ insight in the structure of gauge theories in and beyond large N_c limit
- hope for a better understanding of full QCD

Practical:

- NLO calculations crucial for the LHC programme
- bottleneck at NLO are virtual corrections
- ▶ aim is to be able to do N-leg one-loop calculations for a general process (generic spins and masses) ⇒ e.g. Alpgen@NLO

A full N-particle NLO calculation requires:

tree graph rates with N+I partons
 soft/collinear divergences

- tree graph rates with N+I partons
 soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration

- tree graph rates with N+I partons
 soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

- tree graph rates with N+1 partons
 soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

A full N-particle NLO calculation requires:

- tree graph rates with N+1 partons
 soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

Tree level (real correction) and subtraction terms are fully understood and automated \Rightarrow concentrate on the virtual contribution in the following

Automated subtraction:

Gleisberg, Krauss '07; TeVJet [public] Seymour, Tevlin '08; Hasegawa, Moch, Uwer '08

Traditional approaches to NLO

- Iraw all possible Feynman diagrams (use automated tools)
- write one-loop amplitudes as \sum (coefficients × tensor integrals)
- automated (PV-style) reduction of tensor integrals to scalar ones

Most 2 \rightarrow 3 and the first 2 \rightarrow 4 LHC processes [pp \rightarrow Hjj,WWj,WWW, ttj, qq \rightarrow ttbb ...] computed this way

Traditional approaches to NLO

- I draw all possible Feynman diagrams (use automated tools)
- write one-loop amplitudes as \sum (coefficients × tensor integrals)
- automated (PV-style) reduction of tensor integrals to scalar ones

Most 2 \rightarrow 3 and the first 2 \rightarrow 4 LHC processes [pp \rightarrow Hjj,WWj,WWW, ttj, qq \rightarrow ttbb ...] computed this way

Problem solved in principle, but brute force approaches plagued by worse than factorial growth \Rightarrow difficult to push methods beyond N=6 because of high demand on computer power, but N>5 if great interest at the LHC

Traditional approaches to NLO

- I draw all possible Feynman diagrams (use automated tools)
- write one-loop amplitudes as \sum (coefficients × tensor integrals)
- automated (PV-style) reduction of tensor integrals to scalar ones

Most 2 \rightarrow 3 and the first 2 \rightarrow 4 LHC processes [pp \rightarrow Hjj,WWj,WWW, ttj, qq \rightarrow ttbb ...] computed this way

Problem solved in principle, but brute force approaches plagued by worse than factorial growth \Rightarrow difficult to push methods beyond N=6 because of high demand on computer power, but N>5 if great interest at the LHC

Many new ideas recently. I will talk about generalized unitarity and show its simplicity, generality, efficiency, and thus suitability for automation

D-dimensional unitarity

We just heard a comprehensive overview of generalized unitarity with an accurate historical perspective by Zoltan Kunszt In the following I will concentrate on practical aspects: numerical implementation, efficiency, performance, applications, results

References:

esj

These papers heavily rely on previous work

- Bern, Dixon, Kosower '94
- Ossola, Pittau, Papadopoulos '06
- Britto, Cachazo, Feng '04

[Unitarity, oneloop from trees] [OPP] [Generalized cuts]

- [....]

Decomposition of the one-loop amplitude

Remarks:

- higher point function reduced to boxes + vanishing terms
- coefficients depend on D (i.e. on ϵ) \Rightarrow rational part
- box, triangles and bubble integrals all known analytically

['t Hooft & Veltman '79; Bern, Dixon Kosower '93, Duplancic & Nizic '02; Ellis & GZ '08, public code ⇒ http://www.qcdloop.fnal.gov]

* if non-vanishing masses: tadpole term; notation: $[i_1|i_m] = 1 \le i_1 < i_2 \ldots < i_m \le N$

Cut-constructable part

Start from

$$\mathcal{A}_{N}^{\text{cut}} = \sum_{[i_{1}|i_{4}]} d_{i_{1}i_{2}i_{3}i_{4}} I_{i_{1}i_{2}i_{3}i_{4}}^{(D)} + \sum_{[i_{1}|i_{3}]} c_{i_{1}i_{2}i_{3}} I_{i_{1}i_{2}i_{3}}^{(D)} + \sum_{[i_{1}|i_{2}]} b_{i_{1}i_{2}} I_{i_{1}i_{2}}^{(D)} = \int \frac{d^{D}l}{i(\pi)^{D/2}} \mathcal{A}_{N}^{\text{cut}}(l)$$

with

$$I_{i_1\cdots i_M}^D = \int \frac{d^D l}{i(\pi)^{D/2}} \frac{1}{d_{i_1}\cdots d_{i_M}}$$

Look at the integrand

$$\mathcal{A}_{N}^{\text{cut}}(l) = \sum_{[i_{1}|i_{4}]} \frac{\bar{d}_{i_{1}i_{2}i_{3}i_{4}}}{d_{i_{1}}d_{i_{2}}d_{i_{3}}d_{i_{4}}} + \sum_{[i_{1}|i_{3}]} \frac{\bar{c}_{i_{1}i_{2}i_{3}}}{d_{i_{1}}d_{i_{2}}d_{i_{3}}} + \sum_{[i_{1}|i_{1}]} \frac{\bar{b}_{i_{1}i_{2}}}{d_{i_{1}}d_{i_{2}}}$$

Get cut numerators by taking residues: i.e. set inverse propagator = 0 In D=4 up to 4 constraints on the loop momentum (4 onshell propagators) \Rightarrow get up to box integrals coefficients

Construction of the box residue

Four cut propagators are onshell \Rightarrow the amplitude factorizes into 4 tree-level amplitudes

Need full loop momentum dependence of the coefficients: $\bar{d}_{ijkl}(l)$

Construction of the box residue

 p_1, p_2, p_3 span the physical space. The dependence on loop momentum enters only through component in the orthogonal, trivial space (n_1)

 $\overline{d}_{ijkl}(l) \equiv \overline{d}_{ijkl}(n_1 \cdot l)$

Use

 $(n_1 \cdot l)^2 \sim n_1^2 = 1$

Then the maximum rank is one and the most general form is $\overline{d}_{ijkl}(l) = d^{(0)}_{ijkl} + d^{(1)}_{ijkl} \, l \cdot n_1$

Using the two solutions of the unitarity constraint one obtains

$$d_{ijkl}^{(0)} = \frac{\operatorname{Res}_{ijkl}(\mathcal{A}_N(l^+)) + \operatorname{Res}_{ijkl}(\mathcal{A}_N(l^-))}{2}$$
$$d_{ijkl}^{(1)} = \frac{\operatorname{Res}_{ijkl}(\mathcal{A}_N(l^+)) - \operatorname{Res}_{ijkl}(\mathcal{A}_N(l^-))}{2i\sqrt{V_4^2 - m_l^2}}$$

For triangle, bubble and tadpole coefficients proceed in the same way

Final result: cut-constructable part

Spurious terms integrate to zero

$$\int [d\,l] \, \frac{\overline{d}_{ijk}(l)}{d_i d_j d_k d_l} = d_{ijkl}^{(0)} \int [d\,l] \, \frac{1}{d_i d_j d_k d_l} = d_{ijkl} I_{ijkl}$$
$$\int [d\,l] \, \frac{\overline{c}_{ijk}(l)}{d_i d_j d_k} = c_{ijk}^{(0)} \int [d\,l] \, \frac{1}{d_i d_j d_k} = c_{ijk} I_{ijkl}$$
$$\int [d\,l] \, \frac{\overline{b}_{ij}(l)}{d_i d_j} = b_{ijk}^{(0)} \int [d\,l] \, \frac{1}{d_i d_j} = b_{ij} I_{ij}$$

The final result for the cut constructable part then reads

$$\mathcal{A}_{N}^{\text{cut}} = \sum_{[i_{1}|i_{4}]} d_{i_{1}i_{2}i_{3}i_{4}}^{(0)} I_{i_{1}i_{2}i_{3}i_{4}}^{(D)} + \sum_{[i_{1}|i_{3}]} c_{i_{1}i_{2}i_{3}}^{(0)} I_{i_{1}i_{2}i_{3}}^{(D)} + \sum_{[i_{1}|i_{2}]} b_{i_{1}i_{2}}^{(0)} I_{i_{1}i_{2}}^{(D)}$$

Full one-loop virtual amplitudes

Cut constructable part can be obtained by taking residues in D=4

Generic D dependence

Two sources of D dependence

dimensionality of loop momentum D nr. of spin eigenstates/ polarization states D_s

Keep D and D_s distinct

Two key observations

I. External particles in D=4 \Rightarrow no preferred direction in the extra space

$$\mathcal{N}(l) = \mathcal{N}(l_4, \tilde{l}^2)$$
 $\tilde{l}^2 = -\sum_{i=5}^D l_i^2$ \mathcal{N} : numerator function

• in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals

Two key observations

I. External particles in D=4 \Rightarrow no preferred direction in the extra space

$$\mathcal{N}(l) = \mathcal{N}(l_4, \tilde{l}^2)$$
 $\tilde{l}^2 = -\sum_{i=5}^D l_i^2$ \mathcal{N} : numerator function

 \blacksquare in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals

2. Dependence of \mathcal{N} on D_s is linear (or almost...) as it appears from closed loops of contracted metrics

 $\mathcal{N}^{D_s}(l) = \mathcal{N}_0(l) + (D_s - 4)\mathcal{N}_1(l)$

■ evaluate at any D_{s1} , $D_{s2} \Rightarrow get \mathcal{N}_0$ and \mathcal{N}_1 , i.e. full \mathcal{N}

Choose D_{s1} , D_{s2} integer \Rightarrow suitable for numerical implementation

 $[D_s = 4 - 2\varepsilon$ 't-Hooft-Veltman scheme, $D_s = 4$ FDH scheme]

Practically: pentagon cuts

$$\frac{\mathcal{N}^{(D_s)}(l)}{d_1 d_2 \cdots d_N} = \sum_{[i_1|i_5]} \frac{\overline{e}_{i_1 i_2 i_3 i_4 i_5}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4} d_{i_5}} + \sum_{[i_1|i_4]} \frac{\overline{d}_{i_1 i_2 i_3 i_4}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} + \sum_{[i_1|i_3]} \frac{\overline{c}_{i_1 i_2 i_3}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{b}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1}^{(D_s)}(l)}{d_{$$

V₅: function of the 4

n_i: span trivial space,

 \perp to physical one

inflow momenta

Pentagon residue:

$$\overline{e}_{ijkmn}^{(D_s)}(l_{ijkmn}) = \operatorname{Res}_{ijkmn}\left(\frac{\mathcal{N}^{(D_s)}(l)}{d_1 \cdots d_N}\right) \qquad \Longleftrightarrow \qquad d_i(l_{ijkmn}) = \cdots = d_n(l_{ijkmn}) = 0$$

Solution:

$$l_{ijkmn}^{\mu} = V_5^{\mu} + \sqrt{\frac{-V_5^2 + m_n^2}{\alpha_5^2 + \dots + \alpha_D^2}} \begin{pmatrix} D \\ \sum_{h=5}^{D} \alpha_h n_h^{\mu} \end{pmatrix} \quad \forall \alpha_i$$

$$n_i$$

$$\operatorname{Res}_{ijkmn} \left(\frac{\mathcal{N}^{(D_s)}(l)}{d_1 \cdots d_N} \right) = \sum \mathcal{M}(l_i; p_{i+1}, \dots, p_j, -l_j) \times \mathcal{M}(l_j; p_{j+1}, \dots, p_k; -l_k)$$

$$\times \mathcal{M}(l_k; p_{k+1}, \dots, p_m; -l_m) \times \mathcal{M}(l_m; p_{m+1}, \dots, p_n; -l_n) \times \mathcal{M}(l_n; p_{n+1}, \dots, p_i; -l_i)$$

<u>Most general parameterization</u>: $\bar{e}_{ijkmn}^{D_s}(l) = \bar{e}_{ijkmn}^{D_s}(l_{ijlmn}) \equiv \bar{e}_{ijkmn}^{D_s,(0)}$

Practically: box cuts

Box residue:

$$\overline{d}_{ijkn}^{(D_s)}(l) = \operatorname{Res}_{ijkn}\left(\frac{\mathcal{N}^{(D_s)}(l)}{d_1 \cdots d_N} - \sum_{[i_1|i_5]} \frac{e_{i_1 i_2 i_3 i_4 i_5}^{(D_s,(0))}}{d_{i_1} d_{i_2} d_{i_3} d_{i_4} d_{i_5}}\right) \quad \Longleftrightarrow \quad d_i(l_{ijkm}) = \cdots = d_n(l_{ijkm}) = 0$$

$$l_{ijkn}^{\mu} = V_{4}^{\mu} + \sqrt{\frac{-V_{4}^{2} + m_{n}^{2}}{\alpha_{1}^{2} + \alpha_{5}^{2} + \dots + \alpha_{D}^{2}}} \begin{pmatrix} \alpha_{1}n_{1}^{\mu} + \sum_{h=5}^{D} \alpha_{h}n_{h}^{\mu} \end{pmatrix} \quad \forall \alpha_{i}$$

$$(\Lambda (D_{s})(l)) \quad \forall \alpha_{i}$$

inflow momenta

$$I_{i}: \text{span trivial span}$$

$$\perp \text{ to physical one}$$

$$\operatorname{Res}_{ijkm}\left(\frac{\mathcal{N}^{(D_s)}(l)}{d_1\cdots d_N}\right) = \sum \mathcal{M}(l_i; p_{i+1}, \dots, p_j, -l_j) \times \mathcal{M}(l_j; p_{j+1}, \dots, p_k; -l_k)$$
$$\times \mathcal{M}(l_k; p_{k+1}, \dots, p_m; -l_m) \times \mathcal{M}(l_m; p_{m+1}, \dots, p_n; -l_i)$$

Most general parameterization of quadrupole cut:

$$\overline{d}_{ijkn}(l) = d_{ijkn}^{(0)} + d_{ijkn}^{(1)}s_1 + (d_{ijkn}^{(2)} + d_{ijkn}^{(3)}s_1)s_e^2 + d_{ijkn}^{(4)}s_e^4$$

$$s_1 = l \cdot n_1$$
$$s_e \equiv -\sum_{i=5}^{D} (l \cdot n_i)^2$$

 \blacktriangleright make 5 choices of α_i and solve for the 5 coefficients

<u>Triangles and bubbles</u>: same procedure with appropriate changes

Putting it all together

$$\frac{\mathcal{N}^{(D_s)}(l)}{d_1 d_2 \cdots d_N} = \sum_{[i_1|i_5]} \frac{\overline{e}_{i_1 i_2 i_3 i_4 i_5}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4} d_{i_5}} + \sum_{[i_1|i_4]} \frac{\overline{d}_{i_1 i_2 i_3 i_4}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} + \sum_{[i_1|i_3]} \frac{\overline{c}_{i_1 i_2 i_3}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{b}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1}^{(D_s)}(l)}{d_{$$

Combine the two evaluations:

$$\mathcal{A}^{\text{FDH}} = \left(\frac{D_2 - 4}{D_2 - D_1}\right) \mathcal{A}_{(D, D_s = D_1)} - \left(\frac{D_1 - 4}{D_2 - D_1}\right) \mathcal{A}_{(D, D_s = D_2)}$$

Need to evaluate loop integration, use:

$$\begin{split} \int \frac{\mathrm{d}^D l}{(i\pi)^{D/2}} \frac{s_e^2}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} &= \frac{D-4}{2} I_{i_1 i_2 i_3 i_4}^{D+2} \to 0\\ \int \frac{\mathrm{d}^D l}{(i\pi)^{D/2}} \frac{s_e^4}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} &= \frac{(D-2)(D-4)}{4} I_{i_1 i_2 i_3 i_4}^{D+4} \to -\frac{1}{6}\\ \int \frac{\mathrm{d}^D l}{(i\pi)^{D/2}} \frac{s_e^2}{d_{i_1} d_{i_2} d_{i_3}} &= \frac{(D-4)}{2} I_{i_1 i_2 i_3}^{D+2} \to \frac{1}{2}\\ \int \frac{\mathrm{d}^D l}{(i\pi)^{D/2}} \frac{s_e^2}{d_{i_1} d_{i_2}} &= \frac{(D-4)}{2} I_{i_1 i_2}^{D+2} \to \frac{m_{i_1}^2 + m_{i_2}^2}{2} - \frac{1}{6} \left(q_{i_1}^2 - q_{i_2}^2\right)^2\\ \int \frac{\mathrm{d}^D l}{(i\pi)^{D/2}} \frac{s_i}{d_{i_1} \cdots d_{i_N}} &= 0 \end{split}$$

Final result

Full one-loop amplitude:

$$\mathcal{A}_{(D)} = \sum_{[i_1|i_5]} e_{i_1i_2i_3i_4i_5}^{(0)} I_{i_1i_2i_3i_4i_5}^{(D)}$$

$$+ \sum_{[i_1|i_4]} \left(d_{i_1i_2i_3i_4}^{(0)} I_{i_1i_2i_3i_4}^{(D)} - \frac{D-4}{2} d_{i_1i_2i_3i_4}^{(2)} I_{i_1i_2i_3i_4}^{(D+2)} + \frac{(D-4)(D-2)}{4} d_{i_1i_2i_3i_4}^{(4)} I_{i_1i_2i_3i_4}^{(D+4)} \right)$$

$$+ \sum_{[i_1|i_3]} \left(c_{i_1i_2i_3}^{(0)} I_{i_1i_2i_3}^{(D)} - \frac{D-4}{2} c_{i_1i_2i_3}^{(9)} I_{i_1i_2i_3}^{(D+2)} \right) + \sum_{[i_1|i_2]} \left(b_{i_1i_2}^{(0)} I_{i_1i_2}^{(D)} - \frac{D-4}{2} b_{i_1i_2}^{(9)} I_{i_1i_2}^{(D+2)} \right)$$

Cut-constructable:

$$\mathcal{A}_{N}^{CC} = \sum_{[i_{1}|i_{4}]} d_{i_{1}i_{2}i_{3}i_{4}}^{(0)} I_{i_{1}i_{2}i_{3}i_{4}}^{(4-2\epsilon)} + \sum_{[i_{1}|i_{3}]} c_{i_{1}i_{2}i_{3}}^{(0)} I_{i_{1}i_{2}i_{3}}^{(4-2\epsilon)} + \sum_{[i_{1}|i_{2}]} b_{i_{1}i_{2}}^{(0)} I_{i_{1}i_{2}}^{(4-2\epsilon)}$$

Rational part:

$$R_N = -\sum_{[i_1|i_4]} \frac{d_{i_1 i_2 i_3 i_4}^{(4)}}{6} + \sum_{[i_1|i_3]} \frac{c_{i_1 i_2 i_3}^{(9)}}{2} - \sum_{[i_1|i_2]} \left(\frac{(q_{i_1} - q_{i_2})^2}{6} - \frac{m_{i_1}^2 + m_{i_2}^2}{2}\right) b_{i_1 i_2}^{(9)}$$

<u>Vanishing contributions</u>: $\mathcal{A} = \mathcal{O}(\epsilon)$

The F90 Rocket program

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola Recursive unitarity calculation of one-loop amplitudes

<u>First step</u>: use only 3 and 4-gluon vertices \Rightarrow pure gluonic amplitudes <u>Input</u>: arbitrary number of gluons and their arbitrary helicities (+/-) <u>Output</u>: (un)-renormalized virtual amplitude in FDH or t'HV scheme

[Giele & GZ '08]

Automated one-loop

<u>Issues:</u>

- checks of the results
- numerical instabilities at special points
- numerical efficiency: how fast is the algorithm? scaling of time with N
- practicality: computation of realistic LHC processes

poles

$$A_{\rm v} = c_{\Gamma} \left(\frac{N}{\epsilon^2} + \frac{1}{\epsilon} \left(\sum_{i=1}^N \ln \frac{-s_{i,i+1}}{\mu^2} - \frac{11}{3} \right) \right) A_{\rm tree}$$

NB: single pole checks the coefficients of two-point functions, which because of subtraction terms are sensitive to higher-point coefficients

poles

$$A_{\rm v} = c_{\Gamma} \left(\frac{N}{\epsilon^2} + \frac{1}{\epsilon} \left(\sum_{i=1}^N \ln \frac{-s_{i,i+1}}{\mu^2} - \frac{11}{3} \right) \right) A_{\rm tree}$$

NB: single pole checks the coefficients of two-point functions, which because of subtraction terms are sensitive to higher-point coefficients

there is an infinite solutions of the unitarity constraints, results are independent of the specific choice

poles

$$A_{\rm v} = c_{\Gamma} \left(\frac{N}{\epsilon^2} + \frac{1}{\epsilon} \left(\sum_{i=1}^N \ln \frac{-s_{i,i+1}}{\mu^2} - \frac{11}{3} \right) \right) A_{\rm tree}$$

NB: single pole checks the coefficients of two-point functions, which because of subtraction terms are sensitive to higher-point coefficients

- there is an infinite solutions of the unitarity constraints, results are independent of the specific choice
- results independent of all auxiliary vectors for the orthonormal basis and the polarization vectors (gauge inv.)

poles

$$A_{\rm v} = c_{\Gamma} \left(\frac{N}{\epsilon^2} + \frac{1}{\epsilon} \left(\sum_{i=1}^N \ln \frac{-s_{i,i+1}}{\mu^2} - \frac{11}{3} \right) \right) A_{\rm tree}$$

NB: single pole checks the coefficients of two-point functions, which because of subtraction terms are sensitive to higher-point coefficients

- there is an infinite solutions of the unitarity constraints, results are independent of the specific choice
- results independent of all auxiliary vectors for the orthonormal basis and the polarization vectors (gauge inv.)

 \blacktriangleright results independent of the dimensionality i.e. on the choice of D_{s1} , D_{s2}

poles

$$A_{\rm v} = c_{\Gamma} \left(\frac{N}{\epsilon^2} + \frac{1}{\epsilon} \left(\sum_{i=1}^N \ln \frac{-s_{i,i+1}}{\mu^2} - \frac{11}{3} \right) \right) A_{\rm tree}$$

NB: single pole checks the coefficients of two-point functions, which because of subtraction terms are sensitive to higher-point coefficients

- there is an infinite solutions of the unitarity constraints, results are independent of the specific choice
- results independent of all auxiliary vectors for the orthonormal basis and the polarization vectors (gauge inv.)

 \blacktriangleright results independent of the dimensionality i.e. on the choice of D_{s1} , D_{s2}

checks with some known analytical results (all N=6, finite and MHV amplitudes for larger N)

Accuracy

Accuracy

Accuracy

Accuracy

Same picture holds increasing the number of gluons: N=7,8,9,10,11, ...

Finding instabilities

I) Correlation in the accuracy of single pole and constant part

 \Rightarrow if the accuracy on the poles is worse than X use higher precision But this does not check the rational part

Finding instabilities

I) Correlation in the accuracy of single pole and constant part

 \Rightarrow if the accuracy on the poles is worse than X use higher precision But this does not check the rational part

II) How good is the system of equations solved ?

Look at how well residues are reconstructed using the coefficients. Practically: choose a random loop momentum and for a given cut

- compute the residue as linear combination of coefficients
- compute the residue directly
- \Rightarrow if the results differ more than X use higher precision

Tree: 3 methods beyond Feynman

Berends-Giele relations: compute helicity amplitudes recursively using off-shell currents

Berends, Giele '88

Tree: 3 methods beyond Feynman

Tree: 3 methods beyond Feynman

Numerical performance

Time [s] for $2 \rightarrow n$ gluon amplitudes for 10^4 points

Duhr et al. '06 also Dinsdale et al. '06

Final state	BG	BCF	CSW
2g	0.28	0.33	0.26
3g	0.48	0.51	0.55
4g	I.04	1.32	I.75
5g	2.69	7.26	5.96
6g	7.19	59.I	30.6
7g	23.7	646	195
8g	82.	8690	1890
9g	270	127000	29700
10g	864	-	-

numerical superiority of Berends-Giele recursion for large N

Time dependence

Constructive implementation of BG tree-level amplitudes (or recursive with caching)

$$\tau_{\rm tree} = \binom{N}{3} E_3 + \binom{N}{4} E_4 \propto N^4$$

E₃ (E₄) → time for the evaluation of a 3 (4) gluon vertex

Time dependence

Constructive implementation of BG tree-level amplitudes (or recursive with caching)

$$\tau_{\rm tree} = \binom{N}{3} E_3 + \binom{N}{4} E_4 \propto N^4$$

E₃ (E₄) → time for the evaluation of a 3 (4) gluon vertex

Number of tree level amplitudes needed at one-loop

$$n_{\text{tree}} = \left\{ (D_{s1} - 2)^2 + (D_{s2} - 2)^2 \right\} \\ \times \left(5 c_{5,\max} \binom{N}{5} + 4 c_{4,\max} \binom{N}{4} + 3 c_{3,\max} \binom{N}{3} + 2 c_{2,\max} \left[\binom{N}{2} - N \right] \right)$$

Time dependence

Constructive implementation of BG tree-level amplitudes (or recursive with caching)

$$\tau_{\rm tree} = \binom{N}{3} E_3 + \binom{N}{4} E_4 \propto N^4$$

E₃ (E₄) → time for the evaluation of a 3 (4) gluon vertex

Number of tree level amplitudes needed at one-loop

$$n_{\text{tree}} = \left\{ (D_{s1} - 2)^2 + (D_{s2} - 2)^2 \right\} \\ \times \left(5 c_{5,\max} \binom{N}{5} + 4 c_{4,\max} \binom{N}{4} + 3 c_{3,\max} \binom{N}{3} + 2 c_{2,\max} \left[\binom{N}{2} - N \right] \right)$$

[to be compared with factorial growth!]

Comparison with other methods: time roughly comparable

Berger, Bern, Cordero, Dixon, Forde, Ita, Kosower, Maitre '08 Giele & Winter '09 Lazopoulos '09

Sample results at fixed points

Rocket can compute any N-gluon amplitude with arbitrary helicities, consider e.g. 15^{*}gluon momenta random generated:

 p_2 (0.368648489648050, 0.161818085189973, 0.125609635286264, -0.306494430207942) p_3 =(0.985841964092509, -0.052394238926518, -0.664093578996812, 0.726717923425790) p_4 (1.470453194926588, -0.203016239158633, 0.901766792550452, -1.143605551298596)= p_5 (2.467058579094687, -1.840106401193462, 0.715811527707121, 1.479189075734789)= p_6 (0.566021478235079, -0.406406330753485, -0.393435666409983, -0.020556861225509)= p_7 (0.419832726637289, -0.214182754609525, 0.074852807863799, -0.353245414886707)= p_8 (2.691168687878469, 1.868400546247601, 1.850615607221259, -0.571568175905795) p_9 = (1.028090983779864, -0.986442664896249, -0.193408556327968, 0.215627155388572) p_{10} $p_{11} = (1.377779821947130, -0.155359745837053, -1.074009172530291, -0.848908054184264)$ $p_{12} = (1.432526153404585, 0.621168997409793, -0.290964068761809, 1.257624811911176)$ (0.335532948820133, 0.244811479043329, 0.138986808214636, 0.182571538348285)= p_{13} (1.085581415795683, 0.330868645896313, -0.756382142822373, -0.704910635118478) $p_{14} =$ $p_{15} = (0.771463555739934, 0.630840621587917, -0.435349992994295, 0.087558618018677)$

* up to N=20 given in 0805.2152

Sample results at fixed points

Rocket can compute any N-gluon amplitude with arbitrary helicities, consider e.g. 15^{*}gluon momenta random generated:

Helicity amplitude	c_{Γ}/ϵ^2	c_{Γ}/ϵ	1
$ A_{15}^{\text{tree}}(++++\ldots) $	-	-	0
$ A_{15}^{v,unit}(++++\ldots) $	0	0	1.07572071884782
$ A_{15}^{v,anly}(++++) $	0	0	1.07572071880769
$ A_{15}^{\text{tree}}(-+++\ldots++) $	-	-	0
$ A_{15}^{v,unit}(-+++\ldots++) $	0	0	0.181194659968483
$ A_{15}^{v,anly}(-+++\ldots++) $	0	0	0.181194659846677
$ A_{15}^{\text{tree}}(-+++\ldots++) $	-	-	7.45782101450887
$ A_{15}^{v,unit}(++\ldots++) $	111.867315217633	586.858955605213	1810.13038312828
$ A_{15}^{v,anly}(++\ldots++) $	111.867315217633	586.858955605213	1810.13038312852
$ A_{15}^{\text{tree}}(-++-) $	_	-	$5.851039428822597 \cdot 10^{-3}$
$ A_{15}^{v,unit}(-++-) $	$8.776559143021942 \cdot 10^{-2}$	0.460420629357800	1.52033417713680
$ A_{15}^{v,anly}(-++-) $	$8.776559143233895 \cdot 10^{-2}$	0.460420661976678	N.A.
$ A_{15}^{\text{tree}}(+-+\ldots-+) $	-	-	$5.851039428822597 \cdot 10^{-3}$
$ A_{15}^{v,unit}(+-+\ldots-+) $	$8.776559143021942 \cdot 10^{-2}$	0.460420565320471	(1.52960647292231)
$ A_{15}^{v,anly}(+-+\ldots-+) $	$8.776559143233895 \cdot 10^{-2}$	0.460420661976678	N.A.

* Mahlon '93; Bern et al '05; ** Forde, Kosower '05

* up to N=20 given in 0805.2152

Why W+3 jets?

I. W+3jets measured at the Tevaton, but LO varies by more that a factor 2 under reasonable changes in scales

	W^{\pm}, TeV	W^+ , LHC	W^- , LHC
σ [pb], $\mu = 40$ GeV	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
σ [pb], $\mu = 80 \text{ GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
σ [pb], $\mu = 160 \text{ GeV}$	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

Why W+3 jets?

I. W+3jets measured at the Tevaton, but LO varies by more that a factor 2 under reasonable changes in scales

	W^{\pm}, TeV	W^+ , LHC	W^- , LHC
σ [pb], $\mu = 40 \text{ GeV}$	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
σ [pb], $\mu = 80 \text{ GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
σ [pb], $\mu = 160 \text{ GeV}$	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

II.measurements at the Tevaton for W +njets with n=1,2: data is described well by NLO QCD ⇒ verify this for 3 and more jets

Why W+3 jets?

III.W+3jets of interest at the LHC, as one of the backgrounds to modelindependent new physics searches using jets + MET

Why W+3 jets?

III.W+3jets of interest at the LHC, as one of the backgrounds to modelindependent new physics searches using jets + MET

IV. Calculation highly non-trivial optimal testing ground

Primitive amplitudes

For practical reason want amplitudes where external particles are ordered

<u>At tree level</u> color ordered \Rightarrow momentum ordered external particles

<u>At one-loop level</u> color ordered generic amplitude K momentum ordered external particles

Solution

decompose color ordered amplitudes into primitive amplitudes. Colored particles are then ordered, but color blind ones not.

Bern, Dixon, Kosower '94

Primitives: sample color structures

Procedure:

 order all SU(3) particles & allow all orderings of colorless particles

Procedure:

 order all SU(3) particles & allow all orderings of colorless particles Explicitly for W+3jets:

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines

Explicitly for W+3jets:

✓ accept

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines

Explicitly for W+3jets:

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines
- process each cut use standard Ddimensional unitarity

Explicitly for W+3jets:

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines
- process each cut use standard Ddimensional unitarity
- tree level amplitudes are computed via color stripped Feynman rules

Explicitly for W+3jets:

🗙 reject

Sample results

Helicity	$1/\epsilon^2$	$1/\epsilon$	ϵ^0
$A^{\text{tree}}(1^+_{\bar{q}} \ 2^q \ 3^+_g \ 4^+_g \ 5^+_g \ 6^+_{\bar{l}} \ 7^l)$			-0.006873 + i 0.011728
$r_L^{[1]}(1^+_{\bar{q}} \ 2^q \ 3^+_g \ 4^+_g \ 5^+_g \ 6^+_{\bar{l}} \ 7^l)$	-4.00000	-10.439578-i9.424778	5.993700-i19.646278
$A^{\text{tree}}(1^+_{\bar{q}} \ 2^q \ 3^+_g \ 4^+_g \ 5^g \ 6^+_{\bar{l}} \ 7^l)$			0.010248 - i 0.007726
$r_L^{[1]}(1^+_{\bar{q}} \ 2^q \ 3^+_g \ 4^+_g \ 5^g \ 6^+_{\bar{l}} \ 7^l)$	-4.00000	-10.439578 - i9.424778	-14.377555-i37.219716
$A^{\rm tree}(1^+_{\bar{q}} \ 2^q \ 3^g \ 4^+_g \ 5^+_g \ 6^+_{\bar{l}} \ 7^l)$			0.495774 - i 1.274796
$r_L^{[1]}(1^+_{\bar{q}} \ 2^q \ 3^g \ 4^+_g \ 5^+_g \ 6^+_{\bar{l}} \ 7^l)$	-4.00000	-10.439578 - i9.424778	-1.039489 - i 30.210418
$A^{\text{tree}}(1^+_{\bar{q}} \ 2^q \ 3^g \ 4^+_g \ 5^g \ 6^+_{\bar{l}} \ 7^l)$			-0.294256 - i 0.223277
$r_L^{[1]}(1^+_{\bar{q}} \ 2^q \ 3^g \ 4^+_g \ 5^g \ 6^+_{\bar{l}} \ 7^l)$	-4.00000	-10.439578 - i9.424778	-1.444709 - i26.101951

$$r_L^{[j]}(1,2,3,4,5,6,7) = \frac{1}{c_{\Gamma}} \frac{A_L^{[j]}(1,2,3,4,5,6,7)}{A^{\text{tree}}(1,2,3,4,5,6,7)}, \quad c_{\Gamma} = \frac{\Gamma(1+\epsilon)\Gamma(1-\epsilon)^2}{(4\pi)^{2-\epsilon}\Gamma(1-2\epsilon)},$$

Leading color amplitudes in 0808.0941 [Berger, Bern, Cordero, Dixon, Forde, Ita, Kosower, Maitre]

> All amplitudes in 0810.2542 [Ellis, Giele, Kunszt, Melnikov, GZ]

Time dependence of qq + W + n gluons

Time dependence of qq + W + n gluons

Similar plots for qq+n-gluons

Instabilities and accuracy

 \Rightarrow All instabilities detected and cured with quadruple precision

Approximation in first cross-section

NB: at tree level leading color works very well and 4-quark processes small

Scale variation: W⁺+3 jets

- remarkable independence of cross-section on unphysical scales at NLO
- LO=NLO at scales ~ 160 GeV
- gross features of W+3jets are similar to W+2jets, however the price one pays for an infelicitous choice of scales is higher now
- similar results at the Tevatron

p_{T,j3} distribution

Transverse momentum of the 3rd hardest jets in inclusive jet sample

3rd hard jet is softer at NLO

H_T distribution

Measure of the overall hardness of the event $H_T = \sum_j E_{\perp,j} + E_{\perp}^{\text{miss}} + E_{\perp}^e$

K-factor H_T dependent, spectrum becomes softer at NLO

Second W+3jet calculation

More recently, similar calculation for W+3jets done in Blackhat+Sherpa

C.F. Berger, Z. Bern, L.J. Dixon, F.Febres Cordero, D. Forde, T. Gleisberg, H.Ita, D.A. Kosower, D. Maitre [0902.2760]

Still leading color approximation in virtual (not real), all subprocesses included (but no fermion loops) \Rightarrow see Daniel Maitre's talk in few mins

number of jets	CDF	LC NLO	NLO
1	53.5 ± 5.6	$58.3^{+4.6}_{-4.6}$	$57.8^{+4.4}_{-4.0}$
2	6.8 ± 1.1	$7.81_{-0.91}^{+0.54}$	$7.62^{+0.62}_{-0.86}$
3	0.84 ± 0.24	$0.826\substack{+0.049\\-0.084}$	

Final remarks

The beauty and robustness of generalized D-dimensional unitarity

- for tree level amplitudes: make use general Berends-Giele recursion, numerically efficient (large N), general (D, spins, masses)
- ⊙ simple method, straightforward to implement/automate
- universal method (general masses, spins) and unified approach, no "special or extra" cases, no exceptions
- fast: numerical performance as expected (polynomial)
- ☺ transparent: full control on all parts (can extract specific bits)

Final remarks

<u>The beauty and robustness of generalized D-dimensional unitarity</u>

- for tree level amplitudes: make use general Berends-Giele recursion, numerically efficient (large N), general (D, spins, masses)
- ⊙ simple method, straightforward to implement/automate
- universal method (general masses, spins) and unified approach, no "special or extra" cases, no exceptions
- fast: numerical performance as expected (polynomial)
- ⊙ transparent: full control on all parts (can extract specific bits)

Maturity reached for cross-sections calculations? Yes, demonstrated by first explicit calculations (but still room for further improvements)

(Instead of) Conclusions

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola Recursive unitarity calculation of one-loop amplitudes

On a more general side, the current version of Rocket computes one-loop amplitudes for processes $0 \rightarrow n$ gluons, $0 \rightarrow \bar{q}q + n$ gluons, $0 \rightarrow \bar{q}qW + n$ gluons and $0 \rightarrow \bar{q}q\bar{Q}QW + 1$ gluon. It is straightforward to extend the program to include similar processes with the Z boson and processes with massive quarks $0 \rightarrow \bar{t}t + n$ gluons. This list is a testimony to the power of the method and indicates that the development of automated programs for one-loop calculations may finally be within reach.

[Ellis, Giele, Kunszt, Melnikov, GZ 0810.2542]