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Motivations

We will be interested in gluon scattering amplitudes of planar
N = 4 super Yang-Mills.

Motivation: It can give non trivial information about more realistic
theories but is more tractable.

Weak coupling: Perturbative computations are easier than in
QCD. In the last years a huge technology was developed.

The strong coupling regime can be studied, by means of the
gauge/string duality, through a weakly coupled string sigma
model.
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Learn about scattering amplitudes of planar N = 4 super
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Gauge theory amplitudes ( Bern, Dixon and Smirnov)

AL,Full
n ∼

∑
ρ Tr(T aρ(1) ...T aρ(n))A

(L)
n (ρ(1), ..., ρ(2))

Leading Nc color ordered n−points amplitude at L loops: A
(L)
n

The amplitudes are IR divergent.

Dimensional regularization D = 4− 2ε→ A
(L)
n (ε) = 1/ε2L + ...

Focus on MHV amplitudes and scale out the tree amplitude

M
(L)
n (ε) = A

(L)
n /A

(0)
n .

BDS proposal for all loops MHV amplitudes

logMn =
n∑

i=1

(
− 1

8ε2
f (−2)

(
λµ2ε

sεi,i+1

)
− 1

ε
g (−1)

(
λµ2ε

sεi,i+1

))
+ f (λ)Fin(1)

n (k)

f (λ), g(λ)→ cusp/collinear anomalous dimension.

Fine for n = 4, 5, not fine for n > 5.
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String theory set up

Such amplitudes can be computed at strong coupling by using
AdS/CFT .

Minimal surfaces in AdS , ds2 = (dy2
3+1 + dr2)/r2

IR

k

3k4k

1k

1 2

34

r= R / Z2

2

For each particle with momentum
kµ draw a segment ∆yµ = 2πkµ

Concatenate the segments
according to the particular color
ordering.

As in the gauge theory, we need to introduce a regulator.

As zIR →∞ the boundary of the world-sheet moves to r = 0.

Vev of a Wilson-Loop given by a sequence of light-like
segments!

Luis Fernando Alday Cuspygons and minimal surfaces in AdS



Background
Special kinematical configurations

Conclusions and outlook

Gauge theory results
String theory set up
Explicit example

Prescription

An ∼ e−
√

λ
2π

Amin

An: Leading exponential behavior of the n−point scattering
amplitude.

Amin(kµ1 , k
µ
2 , ..., k

µ
n ): Area of a minimal surface that ends on a

sequence of light-like segments on the boundary.
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Four point amplitude at strong coupling

Consider k1 + k3 → k2 + k4

The simplest case s = t.

Y1

Y2

Y0

Y1

Y2

Need to find the minimal surface ending on
such sequence of light-like segments

r(y1, y2) =
√

(1− y2
1 )(1− y2

2 )

y0 = y1y2

In embedding coordinates (−Y 2
−1 − Y 2

0 + Y 2
1 + ...+ Y 2

4 = −1)

Y0Y−1 = Y1Y2, Y3 = Y4 = 0

”Dual” SO(2, 4) isometries → most general solution ( s 6= t )
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Let’s compute the area...

In order for the area to converge we need to introduce a
regulator.

Dimensional reduction scheme: Start with N = 1 in D=10
and go down to D = 4− 2ε.

For integer D this is exactly the low energy theory living on
Dp−branes (p = D − 1)

Regularized supergravity background

ds2 =
√
λDcD

(
dy2

D + dr2

r2+ε

)
→ Sε =

√
λDcD

2π

∫
Lε=0

r ε

The regularized area can be computed and it agrees precisely
with the BDS ansatz!

What about other cases with n > 4?

for all n SO(2, 4)→ Astrong = A1−loop + F (
xijxkl

xikxjl
) (Drummond et. al. )
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Consider a special kinematical configuration

X1

X2

X1

t

X2
Projection of the world-sheet to the
(y1, y2) plane is a polygon which
circumscribes the unit circle.

Eom’s and boundary conditions are
consistent with Y3 = Y4 = 0.

The surface lives effectively in a AdS3 subspace!
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The scattering is equivalent to a 2D scattering, e.g. in the cylinder.

Consider a zig-zagged Wilson loop of 2n
sides

Parametrized by n X +
i coordinates and n

X−i coordinates.

We can build 2n− 6 invariant cross ratios.

X
!
2

X
!
4X

+
1

X
+
3

X
+
2 X

!
3

!1 1

Consider classical strings on AdS3.
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Strings on AdS3

Strings on AdS3 : ~Y .~Y = −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 = −1

Eoms : ∂∂̄ ~Y−(∂~Y .∂̄ ~Y )~Y = 0, Virasoro : ∂~Y .∂ ~Y = ∂̄ ~Y .∂̄ ~Y = 0

Polhmeyer kind of reduction → generalized Sinh-Gordon

α(z , z̄) = log(∂~Y .∂̄ ~Y ), p = −e−αεabcd∂
2Y aY b∂Y c ∂̄Y d

↓
p = p(z), ∂∂̄α− e2α + |p(z)|2e−2α = 0

A =

∫
e2αd2z
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Generalized Sinh-Gordon → Strings on AdS3?

(∂ + BL)ψL
a = 0

(∂ + BR)ψR
ȧ = 0

BL
z =

(
∂α eα

e−αp(z) −∂α

)

Space-time coordinates

Ya,ȧ =

(
Y−1 + Y2 Y1 − Y0

Y1 + Y0 Y−1 − Y2

)
= ψL

aMψR
ȧ

One can check that Y constructed that way has all the correct
properties.
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Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d

A1,2 → A1,2: 2d gauge field, A3,4 → Φ,Φ∗: Higgs field.

Hitchin equations

F (4) = ∗F (4) →
Dz̄Φ = DzΦ∗ = 0

Fzz̄ + [Φ,Φ∗] = 0

We can decompose B = A + Φ.

dB + B ∧ B = 0 implies the Hitchin equations.

We have a particular solution of the SU(2) Hitchin system.
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Classical solutions on AdS3 → p(z), α(z , z̄)

dw =
√

p(z)dz , α̂ = α− 1

4
log pp̄ → ∂w ∂̄w̄ α̂ = sinh2α̂

n = 2 ”square” solution: p(z) = 1, α̂ = 0

For the solutions relevant to scattering amplitudes we require
p(z) to be a polynomial and α̂ to decay at infinity.
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Consider a generic polynomial of degree n − 2

p(z) = zn−2 + cn−4z
n−4 + ...+ c1z + c0

We have used translations and re-scalings in order to fix the
first two coefficients to one and zero.

For a polynomial of degree n− 2 we are left with 2n− 6 (real)
variables.

This is exactly the number of invariant cross-ratios in two
dimensions for the scattering of 2n gluons!

Null Wilsons loops of 2n sides⇔ Pn−2(z) and α(z , z̄)
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Regular polygons

Simplest case: p(z) = zn−2 → w = n
2zn/2 α(z , z̄) = α(ρ)

In the w plane we go around n/2 times.

Boundary: |w | � 1→ α̂ ≈ 0. Gral solution of the linear problem:

ψL
a = c+

a η
+ + c−a η

−, η+ =
(

ew+w̄

0

)
, η− =

(
0

e−(w+w̄)

)

i

anti!Stokes

anti!Stokes

Stokes Stokes

i+1 S Si+1 i

next sheet

w!plane, left problem
Focused in the left problem.

w−plane divided into two regions
(anti-Stokes sectors), ±Re(w) > 0

In each sector, one of the two
solutions dominates.

In the anti-Stokes lines, both are of
the same order.
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There is a Stokes phenomenon going on...

The large solution is only defined up to a multiple of the small
solution.

Actually, as we cross the (e.g. the first) Stokes line...

(
ew+w̄

0

)
→
(

ew+w̄

0

)
+ γ

(
0

e−(w+w̄)

)
This jump in the small component of the large solution is
characterized by the Stokes matrix Sb

a =
(

1 γ
0 1

)
This small component becomes important as we cross to the
other anti-Stokes region.
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The right-problem is similar: ψR
a = c+

a

(
e

w+w̄
i

0

)
+ c−a

(
0

e−
w+w̄

i

)

next sheet

Stokes

anti!Stokes

Stokes

anti!Stokes

i

i+1

i

S

S

i+1

w!plane, right problem

But now the Stokes and anti-Stokes lines are rotated.
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X
!
iX

+
i(      ,      )

X
+
i+1 X

!
i(       ,       )

X
+
i+1 X

!
i+1

X
+
i+2 X

!
i+1(       ,       )(       ,       )

w!plane

next sheet

X
+

X
!

X
!
iX

+
i(      ,      )

X
+
i+1 X

!
i(       ,       )

X
+
i+1 X

!
i+1(       ,       )

The w−plane is divided into quadrants.

At each quadrant, a pair of solutions (ηL

and ηR) is dominant.

The whole region corresponds to a single
point in space-time, a cusp.

As we cross one of the anti-Stokes lines,
the dominant solution L or R changes and
we jump to the next cusp.

At each step only one changes → in R1,1

only the X + or X− coordinate changes

As we go around the w−plane n/2 times,
we get the 2n cusps!
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The inverse map can be solved exactly.

The solution has a Zn symmetry and indeed corresponds to
the regular polygon!

Question: How do we compute the area?

A =

∫
e2α̂d2w =

∫
(e2α̂ − 1)d2w +

∫
1d2w = Asinh + Adiv

Asinh is finite, we don’t need to introduce any regulator.

Adiv is divergent, we need to regularize it
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In order to compute Adiv use dimensional regularization...

Adiv (ε) =

∫
1

r ε
d2w ≈ n

(sin π
2n )εε2

It has the expected IR behavior!

Since α = α(|z |), the Sinh-Gordon equation reduces to
Painleve III.

The integrand of Asinh was studied by Zamolodchikov!

Asinh =
π

4n
(3n2 − 8n + 4),

When n→∞, the regular Wilson loop approaches the circular
Wilson loop.

Asinh → 3
4πn − 2π +O(1/n) in agreement with the known

result!
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First non trivial case: p(z) = z2 −m, the ”octagon”

We can split the area again into Asinh and Adiv , but...
We don’t know explicitly the solution for α...
We cannot perform the inverse map...
The w−plane is complicated...

Sheet 2

m
2

m
2

Sheet 1

The information of m survives at large distances and we can
compute cross-ratios vs. m

emr =
(x+

4 −x+
1 )(x+

3 −x+
2 )

(x+
4 −x+

3 )(x+
2 −x+

1 )
, emi =

(x−4 −x−1 )(x−3 −x−2 )

(x−4 −x−3 )(x−2 −x−1 )
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Adiv depends on the details of the solution at infinity.

Also the locations of the cusps depend on these details.

Q: Could we write Adiv in terms of the position of the cusps,
bypassing these details? almost!

Adiv = Aeasy
div (xi ) + A(γL, γR)

Aeasy
div (xi ) is pretty simple and fixed by conformal Ward

identities.

A(γL, γR) depends on the Stokes parameters in a simple way.
But, its very hard to compute the Stokes parameters in terms
of m, m̄.
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Asinh = Asinh(m, m̄)

Connection to Hitchin equations: Asinh is related to the
Kahler potential of the moduli space of solutions.

Moduli space ( solutions
gauge transf .) param. by p(z) =

∏n−2
i=1 (z − zi )

In that space we can define a natural metric gzi z̄i = ∂zi∂z̄j K

Asinh ≈
∑

(zi∂zi + z̄i∂z̄i )K

But...How do we compute the γ(m)’s and the metric of the moduli
space?!
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Gaiotto, Moore and Neitzke found a very similar problem ( the
same Hitchin equations ) in a very different context!

Theories which arise from wrapping D4-branes on Riemann
surfaces.

These are some 3d theories with 8 supercharges ( N=4 ).

The moduli space of solutions is the same as the moduli space
of the Hitchin equations in the corresponding Riemann
surfaces.

For the simplest case (corresponding to our octagon) they found
exact answers! for the Stokes parameters and for the metric of the
moduli space!
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Gathering all the terms and working a little bit...

Eight sided Wilson loop at strong coupling

Asinh + A(γL, γR) =
1

2

∫
dt

m̄et −me−t

tanh 2t
log
(

1 + e−π(m̄et+me−t)
)

This is the remainder function for the scattering of eight
gluons (for this particular configuration)

Correct limits as |m| → 0 and |m| → ∞.

Correct analytic structure.
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What have we done?

We have given a further small step towards the computation
of classical solutions relevant to scattering amplitudes at
strong coupling.

Explicit solutions for regular polygons.

We could compute the area for the octagon, even without
knowing (fully) the classical solution.
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What things need to be done?

Try to use as much as possible the technology developed by
GMN.

Physical construction connecting GMN to our problem?

Could we compute these amplitudes at all values of the
coupling?!

What about other kind of solutions? e.g. correlations
functions?

Can we extend what we did to the full AdS5?
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Eight sided Wilson loop at strong coupling

Asinh+A(γL, γR) = |m|
∫ ∞
−∞

dt
sinh t

tanh(2t + 2iφ)
log
(

1 + e−2π|m| cosh t
)
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