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@ Motivation

e A twistor theorist's perspective
o A field theorist’s perspective

@ BCFW recursion relations in twistor space

e The BCFW shift
e Transforming BCFW to twistor space (& ambitwistor space)
e The basic three-point amplitudes in twistor space

© Amplitudes in twistor space

e Examples: Tree-level MHV amplitudes & NMHV amplitudes
e Twistor geometry & triangulations
e Super-generalized unitarity in twistor space

@ Conclusions & Outlook
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Motivation: For twistor theorists

@ Massless free field equation O¢(x) = 0 has general solution

o) = [ a*p &> i(p) = [ a*p &> a()0(A ) J

@ d(A, ;\) is an arbitrary function on the momentum space null cone p,,/ = /\A;\A/.
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Motivation: For twistor theorists

@ Massless free field equation O¢(x) = 0 has general solution

o) = [ a*p &> i(p) = [ a*p &> a()0(A ) J

@ d(A, ;\) is an arbitrary function on the momentum space null cone p,,/ = AAS\A/-

@ Likewise, on-shell free fields can be represented on twistor space

0 = [ Ay £2(wl, Fa(n) = [ 2R 603 o2, 5) J

/ / ’ /
@ L, is the line u* = x* X, and so 3/0x™ acts on (W)L, as Aad/0p” . Thus

2
8%f_,
Oe(x) = AdAy AAA =0

4’( ) f[_x< > A BHAI 8#,4/
@ In Lorentzian signature correspondence involves cohomology

{Positive energy soln of linearized eom

~ HL(PT+ _
for massless field, helicity h } ~ HY(PT", O(2h — 2))
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Motivation: For twistor theorists

@ Massless free field equation O¢(x) = 0 has general solution

o) = [ a*p &> i(p) = [ a*p &> a()0(A ) J

@ d(A, ;\) is an arbitrary function on the momentum space null cone p,,/ = AAS\A/-

@ Likewise, on-shell free fields can be represented on twistor space

0 = [ Ay £2(wl, Fa(n) = [ 2R 603 o2, 5) J

/ / ’ /
@ L, is the line u* = x* X, and so 3/0x™ acts on (W)L, as Aad/0p” . Thus

2
8%f_,
Oe(x) = AdAy AAA =0

4’( ) f[_x< > A BHAI 8#,4/
@ In Lorentzian signature correspondence involves cohomology

{Positive energy soln of linearized eom

~ HL(PT+ _
for massless field, helicity h } ~ HY(PT", O(2h — 2))

© Off-shell objects have traditionally been difficult to understand.

@ Requires either f(Z, W) or smooth (0, 1)-forms in complex twistor space.

D. Skinner (Oxford & IHES) BCFW in Twistor Space April 2009



Motivation: For field theorists

@ Conformal Invariance

4(8

A8 _ & (22 pi) x R¥% 4
NMHV <12> .. <61> 1

(34) (56) 8°14((61) (45) (na[56] + ms[64] + ms[45]))

where RfG: 3
Xi6 (1Ix16X63 3] (1|x16 x64 |4] (1] x14 X45 | 5] (1| x14X46 | 6]

and  xjj = pj + piy1 + -+ pji—1

AAT _ 52 AN _ A D
K T axp0%,, K™ =" 554

’
@ At loops, KAA A(1,...,n) # 0 and, unlike anomaly in dual conformal invariance, difficult to analyse failure.

@ Conformal properties obscure, since in mom space. But in twistor space
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Motivation: For field theorists

@ Conformal Invariance

5418 (Z, pi) v R{l6

34 (56) 6014((61) (45) (174[56] + n5[64] + ne[45
where 6 = (3450 VL) ()l 4 mslol) £ dSD)
Xi6 (1lx16X63 3] (1|x16 x64 |4] (1] x12X45 | 5] (1| x14 46 | 6]

; : AAT 22 ; o twi aal _ A
@ Conformal properties obscure, since K’ ——S—~— in mom space. But in twistor space K’ =
) ONpOR 4 32
@ At loops, KAA A(1,...,n) # 0 and, unlike anomaly in dual conformal invariance, difficult to analyse failure.

@ |In classical field theory, scattering is about finding a non-linear completion of
asymptotic data. (Ambi-)Twistor theory is ideal for this!

@ Twistor theory provides generating functions for all the n-particle MHV superamplitudes
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Motivation: For field theorists

@ Conformal Invariance

5 (51P) | oo

Ay = (12)---(61) -

34 (56) 6014((61) (45)(174[56] + n5[64] + e [45
- Ri:e:(z)( ) 67" ((61)(45) (m4[56] + m5[64] + me[4D) X = P+ P e Byt
X35 (11 x16X6313] (1| x16X64 | 4] (1| x14X45 |5] (1| x14 x46 | 6]

’ 2 / ’
@ Conformal properties obscure, since KAA = 87. in mom space. But in twistor space KAA = /LA =0
, EEVEWY 2RV
@ At loops, KAA A, ..., n) # 0 and, unlike anomaly in dual conformal invariance, difficult to analyse failure.

@ |In classical field theory, scattering is about finding a non-linear completion of
asymptotic data. (Ambi-)Twistor theory is ideal for this!

@ Twistor theory provides generating functions for all the n-particle MHV superamplitudes

io: on [ n-particle PT
. € superamplitude
n—=.

o0 _ . 1
Sz (rparticle BGK) - [ qas, any 1 (B, =——B
—~ superamplitude 0+ Ly

/d4|8x log det(d + A)|,

Ly
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e BCFW shift in twistor space

Work in (+ + ——) signature spacetime with A = 4 susy, so twistor space is RP314 & on-shell fields are homogeneous functions

FOv ) = [ @56l o(x, £, ) ®(A, X, ) = [ e N ) J

(2m)?

@ In Lorentzian signature, twistor theory really requires cohomology.
@ Under the Fourier transform, one sees directly that

AN 82 A0

- — i
ONAOX 41 W

Paar = Aada — idg ; =
AA A P

and in fact all the (super)conformal generators act geometrically on (super)twistor space as W;9/9W,.

@ Consider the BCFW supershift |1] = 1] + t|n], A1 = m1 + tnn, |A) = |n) — t|1). It is generated by

{5\ o] ] N o } { o] ] N ] } o o]
— y — or —p1— , — , — or —
" " o Lox, M e Lo, Law, )
@ The half Fourier transform of a shifted momentum amplitude is
0 ~
2Ny | i[piAi By ~
A(Wl,...,W,,—twl)z/I [ VX el A, L A)
i=1
y

and the BCFW shift is superconformally invariant.
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BCFW recursion in twistor space

@ Restore momentum-conserving d-functions to BCFW relation.
t=ty J

d*pd'n 4 G o\ 4 G (n .
S | e = P =P 8 (et pR)AR (P, )

@ Parametrize p = ¢ — t|1)[n|, for £ a variable null vector
4 4 5 40
8 (pL—p) =68 (pL + tA1Xn — £) =& (B — £)
6 (p+pr) = 8% (€ — tA1 %0 + pr) = 8* (€ + BR) -

Can show £ = p and t = t. on support of d-functions.
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BCFW recursion in twistor space

@ Restore momentum-conserving d-functions to BCFW relation.

A, ..., n)= Z/cﬁ“z? sen((1||n) AL, ..., —€) Ar(, . . ., A) J

@ Parametrize p = £ — t|1)[n|, for £ a variable null vector
8 (p— p) = 8" (b + N1 RXn — 0) = 6*(pL — )
6*(p + pr) = 8*(€ — tA1Xn + pr) = 6% (£ + BR) -

Can show £ = p and t = t.« on support of d-functions.

@ Obtain an integral over a complete set of on-shell states for an internal supermultiplet, together with an integral
over the (real) BCFW shift parameter.
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BCFW recursion in twistor space

@ Restore momentum-conserving d-functions to BCFW relation.

d R
AL, ..., n) = Z/d3|4£7t sgn((Llelm) AL, . .., —€) AR(L, - . ., A) J

@ Parametrize p = £ — t|1)[n|, for £ a variable null vector
8 (p— p) = 8" (b + N1 RXn — 0) = 6*(pL — )
6*(p + pr) = 8*(€ — tA1Xn + pr) = 6% (£ + BR) -

Can show £ = p and t = t.« on support of d-functions.

@ Obtain an integral over a complete set of on-shell states for an internal supermultiplet, together with an integral
over the (real) BCFW shift parameter.

@ Everything in sight is on-shell: perfect for twistors.

@ Replacing the subamplitudes by their Fourier transforms from twistor space, we find

AW, W) = 3 [ DWW, W) sen (W) ooy ]) [ AR, Wy — W) |

@ We can formally do t integral using a (complete) Fourier transform:

dt dt . . o
/7f(W,,7tW1):/7d4MZ e‘z'<Wn—‘W1)f(Z):/d““‘z sen(Z - Wh) o2 W F(Z) = sgn(W - By, )F(Wa)
t t
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BCFW recursion in twistor space

@ Restore momentum-conserving d-functions to BCFW relation.

d R
AL, ..., n) = Z/d3|4£{ sgn((Llelm) AL, . .., —€) AR(L, - . ., A) J

@ Parametrize p = £ — t|1)[n|, for £ a variable null vector
8 (p— p) = 8" (b + N1 RXn — 0) = 6*(pL — )
6*(p + pr) = 8*(€ — tA1Xn + pr) = 6% (£ + BR) -

Can show £ = p and t = t.« on support of d-functions.

@ Obtain an integral over a complete set of on-shell states for an internal supermultiplet, together with an integral
over the (real) BCFW shift parameter.

@ Everything in sight is on-shell: perfect for twistors.

@ Replacing the subamplitudes by their Fourier transforms from twistor space, we find

AW W) = 3 [ D WAL, W) sen(Wa W) WO, [ow O, DAR(W. . W) J

@ We can formally do t integral using a (complete) Fourier transform:

dt dt ; ; o
/—f(Wn — W) = / Z iz 12 Wn—tW1) 77y = /d‘”“z sgn(Z - Wh) e 2" Wn F(Z) = sgn(Wy - By, )F (W)
t t
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BCFW recursion in twistor space

@ Restore momentum-conserving d-functions to BCFW relation.

d ~
A = 3 [ sen(@iei) Al —0) Ap(e, ) J

@ Parametrize p = £ — t|1)[n|, for £ a variable null vector
8 (p— p) = 8" (b + N1 RXn — 0) = 6*(pL — )
6*(p + pr) = 8*(€ — tA1Xn + pr) = 6% (£ + BR) -

Can show £ = p and t = t.« on support of d-functions.

@ Obtain an integral over a complete set of on-shell states for an internal supermultiplet, together with an integral
over the (real) BCFW shift parameter.

@ Everything in sight is on-shell: perfect for twistors.

@ Replacing the subamplitudes by their Fourier transforms from twistor space, we find

AW, ..., W) = 2/03"‘WAL(W1,...,W) sgn((WLW) Wi -8y, [0w dw, D AR(W, . . ., W) J

@ We can formally do t integral using a (complete) Fourier transform:

dt dt ; ; o
/—f(Wn — W) = / Z iz 12 Wn—tW1) 77y = /d‘”“z sgn(Z - Wh) e 2" Wn F(Z) = sgn(W - By, )F (Win)
t t

© A (complete) Fourier transform (W, W,,) — (Z, Z,) in Ag leads to [a-Hcck)

AW, Z) = 3 [ DMW DN Z AW, W) sER(WAW) W2 W4 2, (2 Z]) AR(Z, - Za) J

@ Provides a systematic split-signature derivation of Hodges' twistor diagrams.
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The seed amplitudes

To start the recursion, need 3-point seed amplitudes. In momentum space, these are

iyil) 6°! iyn; e Bl
A (12,3 = S 1) Aro(1,2,3) = SR (23 + i3t + 2] J

(12)(23)(31) [12][23][31]
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he seed amplitudes

To start the recursion, need 3-point seed amplitudes. In momentum space, these are

Amnv(1,2,3) = Ayav(L,2,3) =

84 1)) 6°1B( 1)y mi) 54(3 p) 6%1%(n1[23] + 72[31] + n3[12])
(12)(23) (31) L7 [12][23][31] J

@ Easy to half Fourier transform MHV amplitude and obtain

621411 (23) + 2 (31) + p3(12))
(12)(23)(31)

Amnav(1,2,3) =

@ This localizes on a line, as noticed by Nair long ago.

’
° yA & x5 are on a different footing from X4 in this expression, so conformal properties still obscure!
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he seed amplitudes

To start the recursion, need 3-point seed amplitudes. In momentum space, these are

Amnv(1,2,3) = Ayav(L,2,3) =

84 1)) 6°1B( 1)y mi) 54(3 p) 6%1%(n1[23] + 72[31] + n3[12])
(12)(23) (31) L7 [12][23][31] J

@ Easy to half Fourier transform MHV amplitude and obtain

621411 (23) + 2 (31) + p3(12))
(12)(23) (31)

Amnav(1,2,3) =

@ This localizes on a line, as noticed by Nair long ago.

’
° yA & x5 are on a different footing from X4 in this expression, so conformal properties still obscure!

@ Define a family of projective delta functions

: dt - ds dt
514w, W) = / = Sy — tws) 214w we, we) = / = sy — swh — tw) J

@ Manifestly conformally invariant, homogeneity zero (upto signs).
) S3|4(W1, W) imposes coincidence, 52‘4(W1; Wa, W3) collinearity, etc.
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he seed amplitudes

To start the recursion, need 3-point seed amplitudes. In momentum space, these are

Amnv(1,2,3) = Ayav(L,2,3) =

84 1)) 6°1B( 1)y mi) 54(3 p) 6%1%(n1[23] + 72[31] + n3[12])
(12)(23) (31) L7 [12][23][31] J

@ Easy to half Fourier transform MHV amplitude and obtain

621411 (23) + 2 (31) + p3(12))
(12)(23) (31)

Amnav(1,2,3) =

@ This localizes on a line, as noticed by Nair long ago.

’
° yA & x5 are on a different footing from A4 in this expression, so conformal properties still obscure!

@ Define a family of projective delta functions

; dt . ds dt
534 (wn, W) = / = sS4y — ) 5214 Wy Wh, W) = / ?ST S, — sWs — tW) J

@ Manifestly conformally invariant, homogeneity zero (upto signs).
) S3|4(W1, W) imposes coincidence, 52‘4(W1; Wa, W3) collinearity, etc.

@ Choose to do s, t integrals using A\-comps of 54|4(W1 —sWh —tW3) = 5= (13)/(23), t=(12)/(32).

Antrrv (1, 2, 3) = sgn((23)) 8214 (Wa; wa, W) J

@ Sign factors ensure antisymmetry of kinematic factor (cf tr(T1[T2, T3])
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he seed amplitudes

To start the recursion, need 3-point seed amplitudes. In momentum space, these are

Amnv(1,2,3) = Ayav(L,2,3) =

84 1)) 6°1B( 1)y mi) 54(3 p) 6%1%(n1[23] + 72[31] + n3[12])
(12)(23) (31) L7 [12][23][31] J

@ Easy to half Fourier transform MHV amplitude and obtain

621411 (23) + 2 (31) + p3(12))
(12)(23) (31)

Amnav(1,2,3) =

@ This localizes on a line, as noticed by Nair long ago.

’
° yA & x5 are on a different footing from A4 in this expression, so conformal properties still obscure!

@ Define a family of projective delta functions

; dt . ds dt
534 (wn, W) = / = sS4y — ) 5214 Wy Wh, W) = / ?ST S, — sWs — tW) J

@ Manifestly conformally invariant, homogeneity zero (upto signs).
) S3|4(W1, W) imposes coincidence, 52‘4(W1; Wa, W3) collinearity, etc.

@ Choose to do s, t integrals using A\-comps of 54|4(W1 —sWh —tW3) = 5= (13)/(23), t=(12)/(32).

Amnv(1,2,3) = sgn((23)) 8214 (Was Wo, Wa) A (1,2, 3) = sen([02 831)8°14 (Wi, wa) 8214wy, i) )

@ Sign factors ensure antisymmetry of kinematic factor (cf tr(T1[T2, T3])
@ Can also find concrete twistor formulae for .Am(l, 2,3)
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Example: MHV amplitudes

@ Consider the ‘homogeneous term'’

[OMW AW, W) sen(WaW) Wi B, [ Oy ) A (W, Wo 1, Wa) J
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Example: MHV amplitudes

@ Consider the ‘homogeneous term'’

[oMW AW, W) sen(wa W) WO, 0w B, Dsen(10w O, D) 8 (W, Wy 1) 514 (W, Wy 1) J
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Example: MHV amplitudes

@ Consider the ‘homogeneous term’

[OMW AW, W) sen(Wa W) W0 51 W, Wy 1) B4 (Wa, Wa1)

=AW, ..., Wy—1)Amav (Wp—1, Wi, W1)

@ The homogeneous contribution to an NkMHVjust tacks on a 3-pt MHV to a smaller NAMHV
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Example: MHV amplitudes

@ Consider the ‘homogeneous term’

[OMW AW, W) sen(Wa W) W0 51 W, Wy 1) B4 (Wa, Wa1)

=AW, ..., Wy—1)Amav (Wp—1, Wi, W1)

@ The homogeneous contribution to an NkMHVjust tacks on a 3-pt MHV to a smaller NAMHV

@ For n-particle MHV amplitudes, this is the only term

Avav(l, ..., n) = Aunv(1,2,3) Avav(1,3,4) - - - Avav(1,n — 1, n) J

@ Amplitude is simply a product of conformal §-functions (possibly with a sign)

@ Can also check by direct half Fourier transform
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Example: NMHV amplitudes

@ The contribution to an n-point NMHYV from all but the homogeneous term is

> / D*W Anmy (1, - - -, iy W) sgn((IW) Wi -9y, [Ow w, ) Antrry (W, i+ 1, . . ., n) J

@ Integral reduces to 5-point NMHV amplitude using form of MHV amplitudes:
Avav (L, .., W) = Aymv (1, .0, 0) Ag(1, 1, W) Anvav (W, i+1. .., n) = Avav (i+1, .., n—=1) Ag(i

@ Solving the recursion gives
n j—3

Anmuy (L om) =303 Anmav (L iy i+ 1 — 1)) X AL ..o )AG+ L, = 1) AG, -0, 1) J
j=5 i=2

@ Anmuv(l,2,3,4,5) =sgn (Wl 0w, W1-Ow [6W2 8W5]) Anmmuv (2,3, 4, 5) closely related to dual
superconformal invariants R.

n
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ralized unitarity

4
d4 . o N
A1\00p(1v2v3v4) = e X - /H pfld4nié(4)(Pi+ki_Pi+l)A(Plvkn—Pi+1)
i=1 !

Parametrize off-shell loop momenta by p; = 1 + t1|1)[4], p2 = €2 + t2|1)[2], p3 = €3 + t3|3)[2], pa = €4 + t4|3)[4]

d*p
2

dty ~ A
o d351T sgn((1[€1/4]) and  pr+ki—po =401 —Llp+k  where  k(tr, t2) = [1) ([1] + ts[4] — f2[2|)J
i 1

@ Can match §-functions to cut amplitudes (works for n-particle 1-loop MHV).
@ Generalized unitarity method = BCFW (with loop connectivity).

3)4 L dt
Al loop = /D {uvxy} T - sgn((1U)(1V)(3X) (3Y)) sgn([dw, O] [Ow, OuD)A(Y, Wa + ta W3 — t; W1, U)

=1

X A(U, Wy, V) sgn([0w, Ov] [Ow, Ox])A(V, Wo + bWy — t3W3, X) A(X, W3, Y)

@ Regularization / relation to Lorentzian signature still needs to be understood.
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Conclusions

@ BCFW recursion provides tools for QFT in twistor space.

@ Reveals remarkable structure: geometric pictures in twistor space and algebraic ‘triangulation’ picture
@ Can also study gravity: BCFW relation same. In place of KLT (product vs convolution) one has

Amnv(1,2,3) = sgn((23) Wp-01 W5-01) 8*14(Wa)  Agprr(L, 2, 3) = sen([0205] Wi -0 Wi -83) 8*1% (Wa) %1% (W)

Murv (L, 2, 3) = [(23) Ws-81 Ws-0116%8(wy) Myrre(1, 2, 3) = [[9:05] Wi -8, Wy - 03] 518 (Ws) 5°18 (W)

@ Generalized unitarity methods naturally tailored to twistor space.
@ Very important to understand regularization / continuation to Lorentzian signature.

© At present, just imported BCFW & 3-pt amps from momentum space.

@ Would prefer a twistor derivation, perhaps from the twistor actions
SN =4 SYM :/ Q/\hCS(A)‘ng/dMSX Iogdet(é-%—A)‘L
cp3l4 X

1 1
S :/ Q/\I(B,daHJr—H,H >+ 2/d“‘é‘ AdA) 1B, ——B
-ase = [ (@H-+ 34, 1)) + o [ o (xar) 1B, 5

or ambitwistor actions

= = 1
Sn=3sym = [ QA hCS(A) Sn=75G = [ QA FGH + S {HHY) + (H = ) |
X X

@ Lots still to do, but a cohesive twistor framework is emerging.

@ Not only interesting conceptually, but also a usable and perhaps powerful calculus.
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A superconformal puzzle

The sign factors of sgn((12)(23)(31)) or sgn([92 93]) in Apmv (1,2, 3), Aymgrv(1s 2, 3) and the BCFW relations seem to
break conf inv. Is this really true?
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A superconformal puzzle

The sign factors of sgn((12)(23)(31)) or sgn([92 93]) in Apmv (1,2, 3), Aymgrv(1s 2, 3) and the BCFW relations seem to
break conf inv. Is this really true?
Consider the 3-pt MHV amplitude as an example

@ Sign is + according to ordering of three points along the line, so if we could orient all the twistor lines, would replace
sign factor by prescription +1 if ordering agrees with orientation, else —1
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A superconformal puzzle

The sign factors of sgn((12)(23)(31)) or sgn([d2 93]) in Apuv (1,2, 3), Agr(1, 2, 3) and the BCFW relations seem to
break conf inv. Is this really true?
Consider the 3-pt MHV amplitude as an example

@ Sign is 4 according to ordering of three points along the line, so if we could orient all the twistor lines, would replace
sign factor by prescription +1 if ordering agrees with orientation, else —1

@ But orienting all deg 1 RP's C RP? topologically obstructed! M ~ (S2 X SZ)/ZQ 71(M) = Zy = Conformal
invariance is genuinely broken, even at tree-level (same for 3-point MHV amplitudes)
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superconformal puzzle

The sign factors of sgn((12)(23)(31)) or sgn([92 93]) in Apmv (1,2, 3), Aymgrv(1s 2, 3) and the BCFW relations seem to
break conf inv. Is this really true?

Consider the 3-pt MHV amplitude as an example

@ Sign is + according to ordering of three points along the line, so if we could orient all the twistor lines, would replace
sign factor by prescription +1 if ordering agrees with orientation, else —1

@ But orienting all deg 1 RP's C RP? topologically obstructed! M ~ (52 X 52)/22 71(M) = Zp = Conformal
invariance is genuinely broken, even at tree-level (same for 3-point MHV amplitudes)

How is this compatible with fact that amplitudes are annihilated by conformal generators?

@ Signs are locally constant on momentum space

@ Problem really comes from oo in affine spacetime, mom description invalid

Two points of view on the origin of this breaking:

@ Violation is inherent in scattering theory
@ Arises at infinity in spacetime, where momentum space not valid

@ Violation is artifact of (+ + ——) signature

@ Topological argument relied on real twistors

@ Factors of sgn((12)(23)(31)) etc originally arose from Jacobians in §-functions when doing Fourier transform

@ In complex twistor space, exchange properties of amplitude really inherited from antisymmetry of forms, eg
Jopsla QN tr(ANANA)

@ Conformal breaking might arise from ‘gauge fixing' twistor cohomology classes to real twistor space

@ Could a complex / Lorentzian twistor BCFW relation actually be simpler?
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