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NLO Calculations

SMC with ME-corrections are only leading order accurate. Scale uncertainty

αs
n(2µ)≈αs

n(µ)(1− b0αs(µ)log(4))n≈αs(µ)(1−nαs(µ))

For µ = 100GeV, αs = 0.12;
uncertainty:

W + 1J W + 2J W + 3J

± 12% ± 24% ± 36%

To improve on this, need to go to NLO

Positive experience with NLO calculations at LEP, HERA, Tevatron

(we TRUST perturbative QCD after LEP!).

Huge NLO effort towards LHC physics

But: NLO results are cumbersome and unfriendly: typically made up of an n-
body (Born+Virtual+Soft and Collinear remnants) and n + 1 body (real emis-
sion) terms, both divergent (finite only when summed up).

3



Simple example: Z production

“Real” contribution to q q̄ → Z + X:

CF

Nc

gZ
2 gs

2

32π2

1

S

[

2(1+ y2)ξ2 +8(1− ξ)
]
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1
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1

ξ
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+
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−

]}

dξdydYZ

where

• YZ is the Z rapidity

• y = cos θ, θ being the emission angle of the gluon in the partonic CM

• ξ = 2k0/ s
√

in the partonic CM ( s= (p1 + p2)
2)

(

1

ξ

)

+
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ǫ→0

[

1

ξ + ǫ
− log

1

ǫ
δ(ξ)

]

;

∫

0
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+

= 0;

∫

−1

1 (

1

1± y

)

+

= 0,
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Divergent contributions to the cross section for pT
Z > 0 (i.e. ξ > 0, 1 ± y > 0),

compensated by negative divergences (i.e. δ(ξ), δ(1 ± y) terms) at pT
Z = 0,

that arise from the virtual corrections.

pT
Z at NLO:

Negative contributions at

pT
Z = 0 compensate the

diverging real contributions.
For small enough histogram
bins the first bin will always
turn negative!

A negative bin means: O(αs) corrections larger than Born term:
cannot trust perturbation theory!

One should carefully decide the appropriate bin size around the origin.
For more complex processes this becomes a requirement on jet parameters.
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So: merging Showers and NLO is not only a problem of overcounting
(as with LO matrix elements and showers). Some sort of resummation of the
diverging virtual corrections should be carried out, in order to get sensible
results in the dangerous regions of collinear and soft emissions.

The key to the solution: the dangerous region is well described by the
factorization formula. For example, for y→ 1 our cross section becomes

CF

Nc

gZ
2 gs

2

16π2

1

S

[

x2 +1

(1− x)+

]

dy

1− y
dξ dy dYW , withx = 1− ξ

The problem of diverging negative virtual corrections is dealt with and solved
in the Shower formalism.

In the following: assume that the hardest SMC radiation is the first one,
i.e. that the Shower is ordered in relative pT . We deal later with the subtle
issue of the choice of the ordering variable.
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Look back at the cross section for the first emission in a Shower Monte Carlo

dσ = dΦB B(ΦB)



 ∆tI,t0�
No rad iation

+
∑

(jk)

∆tI,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
rad iation





• tI is the maximum hardness allowed initially, t0 is the minimum hardness of emission

• ∆tI,t is the no-radiation probability with hardness > t

∆i(tI , t)= exp



 −

∑

(jk)

∫

t

tI dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





Expand the Shower formula at order O(αs):

dσ = dΦB B(ΦB)









1−
∑

(jk)

∫

t0

tI dt′

t′

∫

dz
αs

2π
Pi,jk(z)�

virtual

+
∑

(jk)

αs

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
rea l







As in the NLO calculation, we have a negative divergent contribution
for no radiation, and a positive divergent contribution for radiation.
The divergence cancels for inclusive cross sections.
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So: the SMC has his own approximate NLO virtual and real terms. To get
NLO accuracy these terms should be modified to yield the exact NLO.

8



First solution: MC@NLO (2002, Frixione+Webber)

Add difference between exact NLO
and approximate (MC) NLO.

• Must use MC kinematics

• Difference should be regular
(if the MC is OK)

• Difference may be negative

Several collider processes already there:
Vector Bosons, Vector Bosons pairs,
Higgs, Single Top (also with W ),
Heavy Quarks, Higgs+W/Z.
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How it works (roughly)

The cross section for the hardest event in MC@NLO is

dσ = B̄
M C(ΦB)dΦB�

S event







∆t0
M C + ∆t

M C RM C(Φ)

B(ΦB)
dΦr

M C�
MC shower







+

[

R(Φ)−RM C(Φ)�
H event

]

dΦ

B̄
M C(ΦB)= B(ΦB) +







V (ΦB)�
infin ite

+

∫

RM C(Φ) dΦr
MC�

infin ite





�
finite

Imagine that soft and collinear
singularities in RMC are regulated
as in V .

The full phase space Φ in parametrized in terms of the Born phase space ΦB

and the radiation variables of the MC Φr
M C (typically z, t, φ), according to the

MC procedure (reshuffling) that yields Φ from ΦB and Φr
M C .

B : Born cross section; V : exact virtual cross section.
RMC : radiation cross section in the MC, typically: RMC = B

1

t

α

2π
P (z)

R : exact radiation cross section;
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We can check that the O(αs) expansion of dσ coincides with the exact NLO;

dσ = B̄
M C(ΦB)dΦB

[

∆t0

M C +∆t
M C RM C(Φ)

B(ΦB)
dΦr

M C

]

+ [R(Φ)−RM C(Φ)]dΦ

B̄
M C(ΦB) = B(ΦB)+

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]

Expand:

dσ =

[

B + V +

∫

RM CdΦr
M C

]

dΦB

[

1−

∫

RM C

B
dΦr

M C +
RM C

B
dΦr

M C

]

+ [R −RM C ]dΦ

= [B + V ]dΦB + BdΦB

[ ∫

RM C

B
dΦr

M C −

∫

RM C

B
dΦr

M C +
RM C

B
dΦr

M C

]

+ [R −RM C ] dΦ

= [B + V ]dΦB + BdΦB

[

RM C

B
dΦr

M C

]

+ [R −RM C ] dΦ = [B + V ]dΦB + RdΦ
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Recipe for MC@NLO

• Compute totals for S and H events:

σS =

∫

|B̄M C

(ΦB)|dΦB, σH =

∫

|R−RM C |dΦ

• Chose an S or H event with probability proportional to σS, σH

• For an S event:

− generate Born kinematics with probability

|B̄M C(ΦB)|=

∣

∣

∣

∣

B(ΦB) +

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]∣

∣

∣

∣

− Feed the Born kinematics to the MC for subsequent shower
with weight ± 1, same sign as B̄

M C

(ΦB).

• For an H event:

− generate Radiation kinematics with probability |R−RM C |.
− Feed to the MC (with weight ± 1, same sign asR−RM C)
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Issues:

• Must use of the MC kinematic mapping (ΦB , Φr
MC)⇒Φ.

• R−RM C must be non singular: the MC must reproduce exactly the
soft and collinear singularities of the radiation matrix element. (Many
MC are not accurate in the soft limit)

• The cancellation of divergences in the expression of B̄MC is taken care
of in the framework of the subtraction method (cancellation of diver-
gences under the integral sign) so that the integral in B̄MC becomes in
fact convergent.

• Negative weights in the output (not like standard MC’s).
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an alternative solution: POWHEG
Positive Weight Hardest Emission Generator

Method to generate the hardest emission first, with NLO accuracy, and
independently of the SMC (P.N. 2004).

• SMC independent; no need of SMC expert; same calculation
can be interfaced to several SMC programs with no extra effort

• SMC inaccuracies in the soft region only affect next-to-hardest
emissions; no matching problems

• As the name says, it generates events with positive weight
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How it works (roughly)

In words: works like a standard Shower MC for the hardest radiation, with
care to maintain higher accuracy.

In a standard MC, the hardest radiation cross section is

dσ = dΦB B(ΦB)



 ∆tI ,t0�
No radiation

+ ∆tI ,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
radiation





• tI is the maximum hardness allowed initially

• ∆tI ,t in the no-radiation probability with hardness > t

SMC algorithm reconstructs from Born kinematics ΦB and radiation variables
t, z, φ, the full radiation phase space Φ (momentum reshuffling)
We say that ΦB is the underlying Born configuration of Φ according to
the mapping defined by the MC algorithm
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Steps to go NLO:

(ΦB, t, z, φ)⇔Φ � (ΦB, Φr)⇔Φ, dΦ = dΦB dΦr

B(ΦB) � B̄(ΦB)= B(ΦB)+





 V (ΦB)
�INFIN ITE

+

∫

R(ΦB, Φr) dΦr

�INFIN ITE




�
FINITE !

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
� R(ΦB, Φr)

B(ΦB)
dΦrad

POWHEG cross section:

dσ = dΦBB̄(ΦB)

[

∆t0
+∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp







−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr�

FIN ITE b ecause of θ function







with tr = kT(ΦB, Φr), the transverse momentum for the radiation.

In the collinear limit, kt
2 must be of the order of t.
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How does it work: dσ = dΦB B̄(ΦB)

[

∆t0 + ∆t

R(Φ)

B(ΦB)
dΦr

]

,

For small kT , the factorization theorem yields

R(Φ)

B(ΦB)
dΦrad ≈

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
and

B̄ ≈B × (1 +O(αs))

Thus: all features of SMC’s are preserved at small kT .
For large kT , ∆→ 1,

dσ = B̄ × R

B
≈R× (1 +O(αs)),

so large kt accuracy is preserved. Integrating in dΦr at fixed ΦB

∫

δ(ΦB − Φ̄B)dσ = B̄(Φ̄B)

So NLO accuracy is preserved for inclusive quantities.
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Example of mapping Φ⇔ (ΦB, Φr): Z pair production

ΦB variables: choose Mzz, Yzz and θ, where

• Mzz: invariant mass of the Z Z pair

• Yzz: rapidity of Z Z pair

• θ: go in the (longitudinally) boosted frame where Yzz = 0.
go to the Z Z rest frame with a transverse boost
In this frame θ is the angle of a Z to the longitudinal direction.

Φr variables:

• x = Mzz/s, (s is the invariant mass of the incoming parton system)
x→ 1 is the soft limit

• y: cosine of the angle of the radiated parton to the beam direction
in the partonic CM frame.

• φ: radiation azimuth.
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Few tricks
Both in MC@NLO and POWHEG, integrals of the form

B̄(ΦB) = B(ΦB) +

[

V (ΦB)
�INFIN ITE

+
∫

R(ΦB, Φr) dΦr

�INFINITE
]

�
FIN ITE !

are expressed within the subtraction method as

B̄(ΦB) = B(ΦB)+ VSV(ΦB) +

∫

dΦr [R(ΦB, Φr)−C(ΦB, Φr)]

Needs one Φr integrations for each Φ point!. To overcome this, we write

B̃(ΦB, Φr)=
B(ΦB) + V (ΦB)

∫

dΦr
+ R(ΦB, Φr)−C(ΦB, Φr) , B̄(ΦB)=

∫

B̃(ΦB, Φr)dΦr .

so that

B̄(ΦBΦ) =

∫

B̃(ΦBΦ, Φr)dΦr .

Use standard procedures (SPRING-BASES, Kawabata; MINT, P.N.)
to generate unweighted events for B̃(Φ̄, Φr)dΦrdΦ̄,
discard Φr (same as integrating over it!).
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POWHEG: Interfacing to SMC’s

For a pt ordered SMC, nothing else needs to be done.
Use the standard Les Houches Interface for User’s Processes (LHI):
put partonic event generated by POWHEG on the LHI;
Run the SMC in the LHI mode.
The LHI provides a facility to pass the pt of the event to the SMC (SCALUP).
As far as the hardest emission is concerned, POWHEG can reach:

• NLO accuracy of (integrated) shape variables

• Collinear, double-log, soft (large Nc) accuracy of the Sudakov FF.
(In fact, corrections that exponentiates are obviously OK)

As far as subsequent (less hard) emissions, the output has the accuracy of
the SMC one is using.
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Status of POWHEG
Up to now, the following processes have been implemented in POWHEG:

• hh→ZZ (Ridolfi, P.N., 2006)

• e+e−→ hadrons, (Latunde-Dada,Gieseke,Webber, 2006),
e+e−→ tt̄ , including top decays at NLO (Latunde-Dada,2008),

• hh→ QQ̄ (Frixione, Ridolfi, P.N., 2007)

• hh→Z/W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson,Tully, 2008;)

• hh→H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008; Herwig++)

• hh→H , hh→HZ/W (Hamilton,Richardson,Tully, 2009;)

• hh→ t + X (single top) NEW (Alioli, Oleari, Re, P.N., 2009)

• hh→Z + jet, Very preliminary (Alioli, Oleari, Re, P.N., 2009)

• The POWHEG BOX, Very preliminary, (Alioli, Oleari, Re, P.N., 2009)
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In practice

MC@NLO: Code and manuals at

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/

1 program for all processes

POWHEG: Codes and manuals in

http://moby.mib.infn.it/~nason/POWHEG

Examples are provide to link POWHEG to HERWIG or PYTHIA,

or to generate a Les Houches Event File to be fed

later to a SMC for showering.

1 program for each process

In the HERWIG++ code there are few independent implementations of MC@NLO
and POWHEG processes

22



Alternatives
Work in progress in other groups; many attempts to formulate SMC showers
that ease the task of producing a MC@NLO type implementation:

• Shower by antenna factorization (Frederix,Giele,Kosower,Skands)

• Shower by Catani-Seymour dipole factorization (Schumann)

• Shower with quantum interference (Nagy,Soper)

• Shower by Soft Collinear Effective Theory (Bauer,Schwartz)

Other approaches in e+e−

• Kramer, Mrenna, Soper (e+e−→ 3 partons)

• Lavesson and Lönnblad: extension of CKKW-L to NLO
completely different from MC@NLO and POWHEG; uses a separation
scale, and uses NLO results with jets clustered with the given scale.
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Examples: Z production
HERWIG alone fails ar large pT ;
NLO alone fails at small pT ;
MC@NLO and POWHEG work
in both regions;
Notice:
HERWIG with ME corrections
or any ME program, give the
same NLO shape at large pT

However: Normalization around
small pT region is incorrect
(i.e. only LO).

The essence of the improvement with respect to standard shower and ME
matched programs is summarized in this plot.
Be careful with the misleading language: Z at LO O(1), NLO O(αs);
At O(1) there is no Z transverse momentum. Thus, the pT distribution pT > 0
is of O(αs), i.e. has leading order accuracy!
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NLO+PS compared with ME programs: ALPGEN and MC@NLO in tt̄ production

expect:
• Disadvantage: worse normalization (no NLO)

• Advantage: better high jet multiplicities (exact ME)

(Mangano, Moretti,Piccinini,Treccani, Nov.06)

ALPGEN:
K = 1.51

MC@NLO:
generated
by shower
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PYTHIA ME vs. POWHEG

For 2→ 1 processes (W/Z and Higgs production), PYTHIA ME corrections

are very similar to POWHEG; it implements the formula

dσ = dΦB B(ΦB)�
B̄ in POWHEG

[

∆t0
+∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr

]

Dashes: PYTHIA X 1.172, Solid: POWHEG
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Different shape in yZ distribution understood as NLO effect
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Comparisons of POWHEG+HERWIG vs. MC@NLO
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Z pair production
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Remarkable agreement for most quantities;
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POWHEG and MC@NLO comparison:
Top pair production

Good agreement for all observable considered
(differences can be ascribed to different treatment of higher order terms)
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Bottom pair production

• Very good agreement For large scales (ZZ, tt̄ production)

• Differences at small scales (bb̄ at the Tevatron)

• POWHEG more reliable in extreme cases like bb̄ , cc̄ at LHC

(yields positive results, MC@NLO has problems with negative weights)
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Z production: POWHEG+HERWIG vs. MC@NLO

Small differences in high and low pT region
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Z production: rapidity of hardest jet (TEVATRON)

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA
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Dip in central region in MC@NLO also in tt̄ and ZZ

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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ALPGEN and tt̄ + jet at NLO vs. MC@NLO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(

dσ
dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

POWHEG distribution as in ALPGEN (Mangano,Moretti,Piccinini,Treccani,Nov.06)
and in tt̄ + jet at NLO (Dittmaier, Uwer, Weinzierl) : no dip present.
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Higgs boson via gluon fusion at LHC
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Higgs boson via gluon fusion at LHC
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POWHEG vs. NNLO vs. NNLL

dσ = B̄(ΦB)dΦB

{

∆(ΦB, pT
m in) + ∆(ΦB, pT )

R(ΦB, Φr)

B(ΦB)
dΦr

}

≈
B̄(ΦB)

B(ΦB)
R(ΦB, Φr)dΦr = {1+O(αs)}R(Φ)dΦ

Better agreement with NNLO this way.
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Jet rapidity in h production

Dip in MC@NLO inerithed from even deeper dip in HERWIG

(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).
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Gets worse for larger ET cuts:

Questions:

Why MC@NLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip? Is that because of the hardest pT spectrum?
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Hard pT spectrum in POWHEG
We understand the cause; we keep it because yields results closer to NNLO;
There is enough flexibility to get rid of it, if one wants!
Go back to the POWHEG cross section:

dσ = B̄(ΦB)

[

∆t0
+ ∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr

]

Break R = Rs + Rf, with Rf finite in collinear and soft limit, define

dσ ′ = B̄
s
(ΦB)

[

∆t0

s + ∆t
s Rs(Φ)

B(ΦB)
dΦr

]

+ Rf(Φ)dΦ

with:

∆t
s = exp

[

−

∫

θ(tr − t)
Rs(ΦB, Φr)

B(ΦB)
dΦr

]

.

Easy to prove that: dσ ′ is equivalent to dσ.
In other words, the part of the real cross section that is treated with the
Shower technique can be varied.
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Rs = R
h2

kT
2 + h2

Rf = R
kT

2

kT
2 + h2

Agrees with NLO
at high pT .
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No new features (dips and the like) arise in the other distributions:

So: high kT cross section and dips are unrelated issues.
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Why is there a dip in MC@NLO?

Write the MC@NLO hardest jet cross section in the POWHEG language;
Hardest emission (P.N., 2004) can be written as

dσ = B̄
HW (ΦB)dΦB�

S event







∆t0
HW + ∆t

HW RHW (Φ)

B(ΦB)
dΦr

HW�
HERW IG shower







+

[

R(Φ)−RHW (Φ)�
H event

]

dΦ

B̄
HW (ΦB) = B(ΦB)+







V (ΦB)�
infinite

+

∫

RHW (ΦB, Φr) dΦr�
infin ite





�
fin ite

(Imagine that soft and collinear singularities in RHW are regulated as in V !).
Like POWHEG with Rs = RHW . But now Rf = R−RHW can be negative.
This formula illustrates why MC@NLO and POWHEG are equivalent at NLO.
But differences can arise at NNLO ...
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For large kT :

dσ =

[

B̄HW(ΦB)

B(ΦB)
RHW(Φ)+ R(Φ)−RHW(Φ)

]

dΦB dΦr
HW

= R(Φ)dΦ�
no dip

+

(

B̄HW(ΦB)

B(ΦB)
− 1

)�
O(αs), but large for Higgs

RHW(Φ)�
Pure Herwig dip

dΦ

So: a contribution with a dip is added to the exact NLO result;

The contribution is O(αsR), i.e. NNLO!

Can we test this hypothesis? Replace B̄HW(Φn)⇒B(Φn) in MC@NLO!

the dip should disappear ...
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MC@NLO with BHWreplaced by B

No visible dip is present! (on the right track, more studies needed cd Does...)
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Detailed study of the problem also by Hamilton,Richardson,Tully, 2009

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig++ dead zone

[ LHC mH=115 GeV ]

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig dead zone overlap

[ LHC mH=115 GeV ]

Both HERWIG and HERWIG++ have a dead radiation region corresponding
to central rapidity and high energy
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Single Top
Both initial state and final state radiation is present;

Born Initial state radiation final state radiation

The separation of the different singular regions is based upon the general
formulation of POWHEG given in Frixione, Oleari, P.N. 2007
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Flavour and singularities separation
There are several allowed flavour structures in the n body process.
A flavour structure is a flavour assignment to the incoming and outgoing
partons. B and V contributions are labelled by the flavour structure index fb.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index fr.
Each component Rfr

has several singularity regions. We thus write

R =
∑

αr

Rαr

where each Rαr has a specific flavour structure, and is singular in only one
singular region. In FKS one writes

Rαr = R×Sαr
,

∑

αr

Sαr
= 1
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The S factors in the FKS formalism are defined as

Si =
1

Ndi
, Sij =

1

Ndij
h

(

Ei

Ei + Ej

)

,

where N is define so that
∑

αr
Sαr

= 1,

di =
(

s
√

Ei/2)a(1− cos2θi)
b, dij = (EiEj)

a(1− cos θij)
b,

lim
z→0

h(z) = 1, lim
z→1

h(z) = 0, h(z)+ h(1− z)= 1.

For example:

h(z)=
(1− z)c

zc + (1− z)c

So, the Si factors single out the region where parton i is collinear to either
initial state line, or is soft, while Sij single out the region where parton i

is collinear to parton j or is soft.
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The underlying Born
This is a basic concept in the POWHEG formalism;
To each region αr we associate an underlying Born flavour configuration fb,
obtained as follows:

• If the singular region is associated to a parton becoming soft, then
the parton must be a gluon, and it is simply removed to get the
underlying Born configuration

• If the region is associated to two parton becoming collinear, then,
in order for the region to be singular, the two partons must come
from the splitting of another parton. The two partons are removed,
and are replaced by the single parent parton with the appropriate
flavour

Notice that in a shower Monte Carlo one first generates the Born process
(i.e. the underlying Born configuration) and then lets one initial or final line
undergo collinear splitting. Here we look at each singular region of the real
matrix element, and ask from which underlyng Born process it could have
been produced via a shower.
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The underlying Born kinematics
To each kinematic configuration for the full radiation phase space Φ, one
associates an underlying Born kinematics ΦB and a set of radiation variables
Φr = (y, z, φ). For initial state radiation ΦB is obtained by going with a
longitudinal boost to the frame where the system recoiling against radiation
has zero longitudinal momentum. In this frame one boosts the recoil system
in the transverse direction, so that its transverse momentum becomes zero

The radiation variables are y = cos θ, θ being the angle between the radiated
parton and the positive rapidity incoming parton, ξ = 2E/ s

√
, where E

is the energy of the radiated parton, and φ is its azimuth.
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For final state radiation, the splitting partons are merged by summing their
3-momenta in the partonic CM frame. The 3-momentum is scaled, and the
recoil system is boosted so that momentum and energy are conserved.

The radiation variables are y = cos θ, θ being the angle between the radiated
partons, ξ = 2Ei/ s

√
, φ is the azimuth of the ij plane relative to kKi + kKj.

(This differs from FKS kinematics , where φ is relative to kKj).
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The B̄ function carries a flavour structure index, and is given by

B̄ fb(ΦB) = [B(ΦB)+ V (ΦB)]fb
+

∑

αr∈{αr|fb}

[dΦr R(Φ)]αr

The Rαr
appearing here have singularities regulated by + prescriptions in the

FKS framework.
we have

• {αr |fb} is the set of all singular regions having the underlying Born
configuration with flavour structure fb.

• [� ]αr
means that everything inside is relative to the αr singular term:

thus R is Rαr
, the parametrization (ΦB , Φr) is the one appropriate to

the αr singular region
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Sudakov FF also carries an fb index:

∆fb(Φn, pt) = exp







−
∑

αr∈{αr|fb}

∫

[dΦr R(Φn, Φr)θ(kt− pt)]αr

Bfb(Φn)







or

∆fb(Φn, pt)=
∏

αr∈{αr|fb}

exp

{

−
∑

∫

[dΦr R(Φn, Φr)θ(kt− pt)]αr

Bfb(Φn)

}

The Sudakov form factor is a product of elementary Sudakov form factors
associated with each radiation region. Technically, one generates radiation
by generating a kT with each elementary form factor, and choosing the one
with the largest kT at the end.
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Double logs and angular ordered Showers

We have discussed MC+NLO assuming that the hardest radiation is the
first one. This is the case only in dipole shower programs (ARIADNE,
newer PYTHIA versions). In virtuality ordered (old PYTHIA) or angular
ordered showers the hardest event may not be the first.
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MC@NLO and HERWIG

In this case

dσ = B̄
M C(ΦB)dΦB�

S event







∆t0

M C + ∆t
M C RM C(Φ)

B(ΦB)
dΦr

M C�
MC shower







+

[

R(Φ)−RM C(Φ)�
H event

]

dΦ.

The S events should already be treated correctly by the MC; the net effect of
the shower development in HERWIG is to generate the hardest radiation
according to the above formula (P.N. 2004).
There are however 2→ 2 processes in HERWIG that may need a truncated
shower to consistently treat colour connections.

The H event may need truncated shower, as any ME result interfaced to the
angular ordered shower; however, being not singular, the region that needs the
truncated shower is power suppressed by the phase space.
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Interfacing POWHEG with angular ordered SMC’s

• Generate event with harderst emission

• Generate all subsequent emissions with a 〈pt〉 veto
equal to the hardest emission 〈pt〉

• Pair up the partons that are nearest in 〈pt〉
• Generate an angular ordered shower associated with the paired parton,

stopping at the angle of the paired partons:
Truncated shower, (P.N., 2004)

• Generate all subsequent (vetoed) showers

69



Towards automation: the POWHEG BOX

The MIB (Milano-Bicocca) group (Alioli, Oleari, Re, P.N.) is working on
an automatic implementation of POWHEG for generic NLO processes.

This framework is being tested in the process hh→Z + 1jet.
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The POWHEG BOX

Build a computer code framework, such that, given the Born cross section, the
finite part of the virtual corrections, and the real graph cross section, one
builds immediately a POWHEG generator. More precisely, the user must supply:

• The Born phase space

• The lists of Born and Real processes (i.e. u s̄→W+c c̄, etc.)

• The Born squared amplitudes B = |M|2, Bij , Bj,µj,µj
′, for all rele-

vant partonic processes; Bij is the colour ordered Born amplitude
squared, Bj,µν is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

• The Real squared amplitude, for all relevant partonic processes. This
may also be obtained by interfacing the program to MADGRAPH.

• The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.

71



Strategy
Use the FKS framework according to the general formulation of POWHEG given
in (Frixione, Oleari, P.N. 2007), hiding all FKS implementation details.
In other words, we use FKS, but the user needs not to understand it.
(Attempts to use the popular Catani-Seymour method
have turned out to be too cumbersome).
It includes:

• The phase space for ISR and FSR, according to FNO2006.

• The combinatorics, the calculation of all Rα, the soft and coll. limits

• The calculation of B̃

• The calculation of the upper bounds for the generation of radiation

• The generation of radiation

• Writing the event to the Les Houches interface

It works! Lots of testing needed now ...
Byproduct: generic NLO implementation using the FKS method
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Case study: Z + jet production
Get virtual matrix elements from MCFM;
Compare first NLO predictions obtained with MCFM and the POWHEG BOX

Virtual corrections are the same, but subtraction terms, soft and collinear
remnants are all different; non trivial test of setup;
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Everything seems to work ...
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Now compare POWHEG+HERWIG with NLO (red)
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Distributions sensitive to more than
two jet show noticeably different.
All others in agreement with NLO
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Conclusions

• NLO accuracy with Shower MC has become a reality in recent years.

• Two methods have provided usable implementations for collider physics
MC@NLO and POWHEG.

• Agreement and differences among the two method are relatively
well understood

• A path to full automation of POWHEG implementations of arbitrary
NLO calculation is open

• Even so, we are just at the beginning: many interesting problems
remain to be addressed, and it is likely that further theoretical
progress is still possible in this framework
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